

ARC-TF: A GUI FOR THIN FILM CHARATERIZATION

Aysu Ismayilova
Kaunas University of Technology
Materials Physics and Nanotechnology

Supervisors: Ricardo Pires, Afonso Vicente, Tomás Campante

CONTEXT

Thin Films

Gold targets

Sn, Formvar, Pb, Au targets

Ag targets

Physical Vapor Deposition chamber

CHARACTERIZATION

Alpha Energy Loss

- measures thickness and uniformity
- risk of damaging films due to vacuum

Rutherford Backscattering Spectrometry

- measures thickness, uniformity and impurities
- requires beam time request/vacuum

X-Ray Attenuation

- measures thickness
- Filippa already talked about it

GOAL: IMPLEMENT XRA IN INTERFACE

Initially:

- Alpha Energy Loss technique was implemented
- LIP Internships 2023
- To expedite the film analysis
- Analysing 1 film: ~10 min → 1 min

X-RAY ATTENUATION ANALYSIS

Beer-Lambert Law:

To find the film thickness:

 μ – from NIST website

← → ♂ ♠ https://physics.nist.gov/cgi-bin/Xcom/xcom2?Method=Elem&Output2=Hand	
Fill out the form to select the data to be displayed:	
<u>Help</u>	
Select by: (only elements 1 - 100)	Options for output units:
Atomic Number:	All quantities in cm ² /g All quantities in barns/atom
Symbol: Au	O All quantities in barns/atom O Partial interaction coefficients in barns/atom
,	and total attenuation coefficients in cm^2/g
	Additional energies in MeV: (optional) (up to 100 allowed)
Graph options:	Note: Energies must be between 0.001 - 100000 MeV (1 keV - 100 GeV) (only 4 significant figures will be used).
✓ Total Attenuation with Coherent Scattering	One energy per line. Blank lines will be ignored.
Total Attenuation without Coherent Scattering	0.008042
☐ Coherent Scattering	
☐ Incoherent Scattering	
☐ Photoelectric Absorption☐ Pair Production in Nuclear Field	☐ Include the standard grid
Pair Production in Electron Field	Energy Range:
□ None	Minimum: 0.001 MeV
	Maximum: 100000 MeV
Submit Information Reset	

X-RAY ATTENUATION ANALYSIS

Without film:

With film:

X-RAY ATTENUATION ANALYSIS

Without film:

With film:

New features added:

Tab Selector Menu:

New features added:

Plot Data Menu:

New features added:

New features added:

New features added:

New features added:

User chooses attenuation coefficient method

User chooses the film material

User chooses the source material

New features added:

New features added:

RESULTS

• Household Al foil

16

RESULTS

• Au film

Using Alpha Energy Loss technique:

RESULTS

• Pb film

Using Alpha Energy Loss technique:

Using X-Ray Attenuation analysis:

AEL: (1.96 \pm 0.03) μ m

XRA: $(1.96 \pm 0.02) \mu m$

CONCLUSION

- Objective achieved: XRA method integrated into interface
- Future perspectives: New features could be implemented

Acquired skills:

- Learned and Developed Python skills
- GUI development using Python (Tkinter library)
- Git and GitHub basic skills
- Knowledge on Radioactive Sources
- Knowledge on Thin Film Technology, Application and Production

Thank you!

ARC-TF at: https://github.com/RiPires/GUI thin films.git

Aysu Ismayilova
Kaunas University of Technology
Materials Physics and Nanotechnology

Supervisors: Ricardo Pires, Afonso Vicente, Tomás Campante Special thanks to Prof. Daniel Galaviz