Probing Ultra-High-Energy Hadronic Interactions using the Earth's Magnetic Field

Elizabeth Osborne

Ultra High Energy Cosmic Rays (UHECRs)

LHC $\sim 10^{17}$ eV Vs. UHECRs $\sim 10^{20}$ eV

Hybrid Detectors:

- 1. Surface Detectors (SD)
- 2. Fluorescence Detectors (FD)

Extensive Air Showers

The cosmic ray energy, direction and nature can be inferred from the EAS properties But, it has been shown that the hadronic interactions are not fully understood

Shower Universality

Three key components to characterise muons in a shower:

- P_T indicates lateral spread of the shower
- X' explains the longitudinal profile of muons produced during the shower development
- E energy spectrum of the muons in the showers

Shower Footprint

$$\theta = 70^{\circ}$$

$$\theta = 84^{\circ}$$

Shower muons footprint at the ground is sensitive to the Earth's magnetic field

Muon Azimuthal Distribution

$$A_N(\phi) = \sum_j r_j \, n_j(\phi, r_j)$$

The shower footprint shape is sensitive to the muon energy

Applying this analysis to Auger

$$A_N = \sum_j r_j N(\phi, r_j)$$

$$A_S = \sum_{j}^{VS.} r_j S(\phi, r_j)$$

The muon azimuthal distribution computed from muons shows the same behavior as when derived from the WCD signal (all particles).

Muon energy spectrum sensitivity

Emulate a shower injecting muons at different heights and energies

When changing the energy spectrum by 10% at lower energies (10 GeV) there's a noticeable effect on the shower footprint - **Possibility to measure Muon EAS energies at Auger!**

BACKUPSLIDES

Shower Footprint

$$A_N(\phi) = \sum_j r_j n_j(\phi, r_j)$$

$$\arctan\left(\frac{Y_{\rm sh}}{X_{\rm sh}}\right)$$

$$\phi = \arctan\left(\frac{Y_{\rm sh}}{X_{\rm sh}}\right) \quad \& \quad r = \sqrt{X_{\rm sh}^2 + Y_{\rm sh}^2}$$

Distribution Sensitivity

