Flavour Anomalies with ML @LHC Run3

LIP Summer Internship Final Workshop

Gabriela Sousa, Teresa Escária

Supervisors: Alessio Boletti, Nuno Leonardo

5/09/2025

Flavour Anomalies

$b \rightarrow sl^+l^-$ transitions

- Flavour-changing neutral current (FCNC) decays
- Forbidden at tree level in the SM

Standard Model (SM)

New Physics? (NP)

New Physics particles may:

- Enhance the decay rate;
- Alter the angular distribution of final-state particles;
- Couple differently to different leptons species (LFUV)

Angular Analysis

- Sensitive to New Physics through angular observables
- •Famous anomaly: P5'
- Deviations in data vs SM predictions

Next steps:

- Improve experimental precision usind latest LHC Run3 data;
- Improve theory calculations.

Recent (2025) result by CMS (*Phys. Lett. B* 864 (2025) 139406) based on Run2 data indicate deviation from a set of SM predictions Corresponding deviations were previously reported also by LHCb

The $B^0 o K^{*0}\mu^+\mu^-$ decay

Non-resonant Channel

$$B^0 \to K^{*0} \mu^+ \mu^- \to K^+ \pi^- \mu^+ \mu^-$$

Possibility of New Physics

Resonant Channel

$$B^0 \to K^{*0}J/\Psi \to K^+\pi^-\mu^+\mu^-$$

- Well understood within the SM
- Used as a control channel
- Branching fraction is precisely measured
- Channel that we focused on

CMS

General purpose detector at LHC

Two Key Subsystems:

Silicon Tracker

- Reconstructs charged particle trajectories, by collecting discrete hits
- Can fit precise tracks, determine momentum and reconstruct vertices for our desired decay

Muon Chambers

Detect muons exiting the calorimeters

Candidate Reconstruction

- Candidate building: combine both muons with two opposite-sign tracks; fit a common displaced vertex; form K o from the hadron pair and B o from $K^{0}+\mu^{+}\mu^{-}$; apply basic track/ID, vertex-probability, and displacement cuts.
- Both $B^0 \to K^+\pi^-\mu^+\mu^-$ and $\bar{B}^0 \to K^-\pi^+\mu^+\mu^-$ decays occur
- CMS has no hadron PID:
 - the K/ π combination closest to $m_{PDG}(K^{*0})$ is associated to the event (a fraction of events can be mis-tagged)
- B⁰ has a long lifetime, leading to a secondary vertex displaced from the primary
- Combinatorial Background:
 - Tracker and muon system may reconstruct uncorrelated tracks that fake B^o candidates
 - Contributes to a smooth, non-peaking background in the B⁰ mass distribution
- Physics Background:
 - Other real B decays with similar final states can mimic the signal

Data Preparation

- Signal sample: from Monte Carlo truth-matched
- Background sample: from Data sidebands
 - \sim 3.5 σ away from mean of the signal peak

0.05

0.04

0.03

0.02

0.01

Background Signal (MC)

m(B⁰) [GeV]

Discriminating Variables

There are several kinematic and geometric variables that can help:

- Flight Length: distance between the primary vertex and the secondary vertex (B^o decay vertex)
- Cos(α): cosine of the angle between the reconstructed B⁰ meson momentum and its flight direction
- Vertex CL: measure of how likely the four tracks come from the same decay point
- DCA: how close a track comes to the beamline
- \mathbf{p}_{T} , $\mathbf{\eta}$, $\mathbf{\phi}$: transverse momenta, pseudorapidities and azimuthal angle of various variables

Applying Cuts

Neural Network Classifier

Architecture:

- Three fully connected hidden layers ;45, 45 and 56 neurons, respectively (optimized with Optuna); with ReLU activation
- Dropout layers (10%) to prevent overfitting
- Sigmoid output for binary classification (signal vs background)

Loss Function and Class Imbalance

- BalancedLoss (Weighted BCE):
 - Extends BCE by introducing class weights via alpha
 - Helps address class imbalance by up-weighting underrepresented class
 - Ensures the model doesn't become biased toward predicting background only

$$L_{Balanced} = -\left[\alpha_1 y \log(\hat{y}) + \alpha_0 (1 - y) \log(1 - \hat{y})\right]$$

Feature selection

1. Correlation Matrix:

- Visualises how strongly variables are correlated (-1 to +1).
- Strong correlations mean variables carry overlapping information.
- We use this to identify and remove redundant features before training. (meter 14)

Feature selection

2. Cumulative SHAP Importance:

Model Evaluation

Used **Receiver Operating Characteristic (ROC)** curves to evaluate classifier performance

Plots True Positive Rate (TPR) vs. False Positive Rate (FPR) across all thresholds

- TPR = signal efficiency;
- o FPR = background misclassification rate

Area Under the Curve (AUC) gives a single performance metric

- AUC = 1 perfect classification
- AUC = 0.5 random performance

Neural Network Output

Figure of Merit

$$FOM = \frac{S}{\sqrt{S+B}}$$

 S/B: signal and background event counts above the threshold after applying estimated scaling

Summary

- Comparisons between **signal and background samples** from MC and data.
- Trained a **neural network classifier** with good separation power.
- Identified the **most relevant variables** (via correlation matrix and SHAP).
- Current dataset: **no visible B0 mass peak** → likely dominated by background noise.
- Next steps:
 - o process a larger data sample;
 - apply trained model to the larger dataset;
 - extract the B0 resonant signal (yield, angular variables);
 - o extend the to the non-resonant channel.

Backup Slides

Variables

- •muLeadingPt / muTrailingPt transverse momentum of the leading and trailing muons.
- •mulsoPR_dR04 / mulsoPR_dR04_sum isolation variables: how much extra activity (tracks or energy) is found within a cone of $\Delta R = 0.4$ around the muon.
- •kstTrkpPt / kstTrkmPt transverse momentum of the kaon and pion tracks.
- •kstTrkpDCABSs / kstTrkmDCABSs significance of the distance of closest approach of the kaon/pion to the beam spot (a measure of track pointing quality).
- •kstTMass reconstructed invariant mass of the K*0
- •bVtxCL vertex fit confidence level of the BO candidate. Higher means a better fit to a common vertex.
- •bLBSs significance of the decay length (how far the BO secondary vertex is displaced from the primary vertex, normalized by its uncertainty).
- •bCosAlphaBS cosine of the pointing angle between the BO momentum and the vector from primary to secondary vertex (close to 1 for well-reconstructed decays).
- •bDCABSs impact parameter significance of the BO candidate relative to the beam spot.
- •kstKplsoPR_dR04 / kstKplsoPR_dR04_sum isolation variables for the kaon from the K*0.

Threshold Optimisation

- Signal (MC) and background (data) do not correspond to same collision statistics:
 - Would expect MC to have the same amount of signal as dataset;
 - Need to scale S and B in FoM accordingly;
- Used Youden's J statistic to guide initial threshold choice:

$$J = TPR - FPR$$

- Maximising J gave initial optimal threshold
- Applied model and initial threshold to full dataset to derive background fraction under the peak
 - Np (backgorund events under peak region); NI and Nh (backgrounf events on left and right sidebands respectively)
- Applied model and initial threshold to MC to get number of predicted signal events after selection
- Scaling applied in Figure of Merit:

$$FOM = \frac{S * w_s}{\sqrt{S * w_s + B * w_B}}$$

$$w_B = \frac{N_p}{N_l + N_h}$$

$$w_S = \frac{S}{S_{MC}} = \frac{x * N_p}{S_{MC}}$$