Measurement of Muon Flux at the LHC using the sRPC detector

LIP summer internship program 2025

João Goulão

Rafael Fernandes

Supervisors:

Cristóvão Vilela

Nuno Leonardo

Introduction

- Built in Lip Coimbra
- First data in 2023
- Located 480m from ATLAS
- In front of SND@LHC
- Goal: measure muon flux

Detector

Measured quantities:

- Charge induced on the back (QB) and front of the strip (QF):
- Time of signal arrival at both ends of each strip, (TB and TF)

• Coordinates:

- $x = \frac{TF TB}{2} \cdot v$
- y = strip position (with the most charge)
- z = plane position

*v is the propagation velocity ≈ 165.5 mm/ns

Monte Carlo Simulation

Simulation Data Structure

- Root TTree;
- Total number of events = 205 446;
- Parameters:
 - Position (x, y, z);
 - Weight (w);
 - Particle identification (id);

Detector Data Analysis

Hit map

- Dispersed distribution;
- Calibration is necessary to correctly visualize data;

Coordinates:

•
$$x = \frac{TF - TB}{2} \cdot v$$

- y = strip number (with the most charge)
- z = plane number

Charge Calibration

Time Calibration

- Plot (TB TF)/2
- Set a threshold (max*0.5)
- Find intersection points
- Compute offset:
 - $\bullet \ \frac{P1+P2}{2}$

General Calibration

•
$$Q_{calibrated,i,p} = Q_{measured,i,p} - Q_{offset,i,p}$$

•
$$T_{calibrated,i,p} = \frac{TF_{measured,i,p} - TB_{measured,i,p}}{2} - T_{offset,i,p}$$

Hit map (calibrated)

Trajectories

Efficiency

Plane 3 Plane 4

Efficiency

$$\varepsilon_{total} = \sum_{1 \le i < j < k \le 4} \varepsilon_i \times \varepsilon_j \times \varepsilon_k - 3 \prod_{i=1}^4 \varepsilon_i$$

Plane	1	2	3	4	Total
Total Area	76.8 %	97.3%	98.2%	74.5%	92.0%
Reduced Area	71.3 %	92.2 %	95.5 %	61.7 %	83.3 %

Flux

Flux (fb/cm ²)	Total Area	Reduced Area
Real Data	6.39 x 10 ⁴	

$$Flux = \frac{N}{\varepsilon \times L \times A}$$

Total Area

- ε = bbbb (Efficiency)
- L = cccc (Luminosity)
- $A = 900 \text{ cm}^2 \text{ (Area)}$

Flux

Flux (fb/cm ²)	Total Area	Reduced Area
Real Data	6.39 x 10 ⁴	1.01 x 10 ⁵

$$Flux = \frac{N}{\varepsilon \times L \times A}$$
 58 % greater

Reduced Area

- ε = 83.3% (Efficiency)
- L = $1.9 \times 10^{-3} \text{ fb}^{-1}$ (Luminosity)
- A = 630 (Area)

Simulation Data Analysis

```
*************************************
*Tree :nt
               : muon
*Entries : 205446 : Total = 34620270 bytes File Size = 22272116 *
    : : Tree compression factor = 1.55
***********************************
     0 :run : run/D
*Entries : 205446 : Total Size= 1648449 bytes File Size = 15580 *
*Baskets: 52: Basket Size= 32000 bytes Compression= 105.72
   1 :event : event/D
*Entries: 205446: Total Size= 1648561 bytes File Size = 539784 *
*Baskets: 52: Basket Size= 32000 bytes Compression= 3.05
*Br 2:id : id/D
*Entries: 205446: Total Size= 1648393 bytes File Size = 99479 *
*Baskets: 52: Basket Size= 32000 bytes Compression= 16.56
*Br 3 :generation : generation/D
*Entries: 205446: Total Size= 1648841 bytes File Size = 159923 *
*Baskets: 52: Basket Size= 32000 bytes Compression= 10.30
*Br 4 :E : E/D
*Entries: 205446: Total Size= 1648337 bytes File Size = 1564223 *
*Baskets: 52: Basket Size= 32000 bytes Compression= 1.05
     5 :w : w/D
*Entries: 205446: Total Size= 1648337 bytes File Size =
                                                  750251 *
            52 : Basket Size= 32000 bytes Compression=
```


General Distribution

Particle distribution in the simulation plane

General Distribution

Particle distribution in the simulation plane

Distribution on the Detector

Particle distribution in x

Particle distribution in y

Particle distribution in the detector plane

Luminosity

$$Muon Flux = \frac{N}{\epsilon \times L \times A}$$

- $N_{pp} = L \times \sigma_{inel}$
- $\sigma_{inel} = 79.3 \pm 0.6 \text{ mb}$
- $N_{pp} = 2 \times 10^7$

• L = $(2.52 \pm 0.02) \times 10^{-7} \text{ fb}^{-1}$

Muon Flux

$$Muon Flux = \frac{N}{\epsilon \times L \times A}$$

- $\varepsilon = 1$ (no interactions in the detector simulated)
- $N = 26.95 \pm 1.00$
- L = $(2.52 \pm 0.02) \times 10^{-7} \text{ fb}^{-1}$
- $A = 21 \times 30 = 630 \text{ cm}^2$
- Muon flux = $(1.70 \pm 0.05) \times 10^5$ fb/cm²

Extrapolation

• Fitted structure at the right of the domain in y;

Gaussian: Norm = 2.41 ± 0.08 ; $\mu = 74.21 \pm 2.07$; $\sigma = 25.17 \pm 2.36$

Fitted y distribution

Extrapolation

Filled remainder of domain according to fitted function

Extrapolation

 Calculated flux through the whole detector with and without extrapolated distribution;

- Regular flux = $(1.70 \pm 0.05) \times 10^5 \text{ fb/cm}^2$
- Extrapolated flux = $(1.51 \pm 0.05) \times 10^5 \text{ fb/cm}^2$

• Extrapolation decreases flux by 11,2% (0.19 x 10⁵ fb/cm²);

Conclusions

Flux Comparison

Flux (fb/cm²)	30x30	30x21	
Real Data	6.39 x 10 ⁴	1.01x 10 ⁵	
Simulation	$(1.51 \pm 0.05) \times 10^5$	$(1.70 \pm 0.05) \times 10^5$	

• The real data and simulation differ by 136% in the 30x30 area, and by 68% in the 30x21 area

In Summary

- Muon interactions at the sRPC detector were studied;
- A Monte Carlo simulation of the muon production and propagation towards this detector was also studied;
- Equivalent values for the muon flux were produced for both a restricted area and the full detector to compare the simulation and real data;
- Real muon flux was in the same order of magnitude as previous calculations for the SND@LHC
- Real and simulated flux differed by more than 100%