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Motivation

The Quark-Gluon Plasma (QGP) is a state of matter where quarks and gluons are
in an extreme condition such that they are deconfined

The state of the art formalism which describes propagation of jet particles in the
QGP is the BDMPS-Z. A full analytical solution is still restricted to the eikonal
approximation

The BMDPS-Z model escalates in complexity when one tries to lift
approximations, yielding challenging equations even in a numerical approach

Since we can think of the jet and the QGP as two systems interacting, one can
think of a Open Quantum System formulation as a candidate for a more natural
framework

In our work, we will introduce the main ideas of OQS and discuss some simple
models inspired by the interaction of jets with a QGP
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Density matrix formalism

Allows for a description of statistical mixtures of quantum states. A quantum state is
represented by an operator ρ : H → H satisfying:

(1) ρ† = ρ (2) tr(ρ) = 1 (3) ⟨ψ|ρ|ψ⟩ ≥ 0 ∀ ψ ∈ H

Expected value of the observable A when the quantum state is ρ: ⟨A⟩ = tr(Aρ)

Pure and Mixed States are identified with:

Pure states: ρ = |ψ⟩⟨ψ| Mixed states: ρ = ∑i pi
∣∣ψi
〉〈

ψi
∣∣

Liouville-von Neumann Equation

dρ(t)
dt

= − i
h̄
[H(t), ρ(t)] (1)
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Open Quantum Systems: Markovian evolution

Quantum system interacting with a
much larger bath.
Goal: find an effective equation for
the time evolution of ρS = trB(ρ).

For a Markovian time evolution, this equation has a specific form [1]:

Lindblad equation

dρ(t)
dt

= − i
h̄
[H(t), ρ(t)] + ∑

k
γk(t)

[
Vk(t)ρ(t)V†

k (t)−
1
2
{V†

k (t)Vk(t), ρ(t)}
]

(2)

Vk are called the jump operators.
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Open Quantum Systems: Weak coupling limit
We can obtain the Lindblad equation in the regime where the system-bath interaction is weak
[1].
Total Hamiltonian: H = HS + HB + V. Assume that V = ∑k Ak ⊗ Bk, A†

k = Ak and B†
k = Bk

Lindblad equation
dρS(t)

dt = − i
h̄ [HS + HLS, ρS(t)] + ∑ω,k,ℓ γkℓ(ω)

[
Aℓ(ω)ρS(t)A†

k (ω)− 1
2{A†

k (ω)Aℓ(ω), ρS(t)}
]

where the jump operators are given by:

Ak(ω) = ∑
ϵ′−ϵ=ω

∣∣ψϵ

〉〈
ψϵ

∣∣Ak
∣∣ψϵ′

〉〈
ψϵ′
∣∣ (3)

where
∣∣ψϵ

〉
are the eigenstates of HS with energy ϵ. The other quantities are given by::

γkl = 2πtr(Bk(ω)Blρth) HLS = ∑
ω,k,ℓ

Skℓ(ω)A†
k (ω)Aℓ(ω) Skl(ω) = P.V.

∫ a

−a

Tr
[
Bk(ω

′)BlρB
]

(ω − ω′)
dω′

(4)
where Bk(ω) is the Fourier transform of Bk in the interaction picture.

Summer 2025 In-medium propagation of particles in an Open Quantum System (OQS) approach 5 / 18



Phenomenological Models of Splitting

We represent the 1-particle state by |1⟩ and the 2-particle state by |2⟩.

Hilbert space: H = span({|1⟩ , |2⟩}) =⇒ ρ(t) =

(
a(t) b(t)
b(t)∗ 1 − a(t)

)
Energy conservation =⇒ HS = ϵ1 =⇒ [HS, ρ] = 0

We code the transition |1⟩ → |2⟩ in the Jump operator L = |2⟩⟨1| =⇒

Lindblad Equation

∂ρ

∂t
= − i

h̄�
���[HS, ρ] + γ

(0 0
0 a(t)

)
− 1

2

(
2a(t) b(t)
b(t) 0

) (5)

ρ(0) = |1⟩ ⟨1| =⇒ ρ(t) =

(
e−γt 0

0 1 − e−γt

)
(6)
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Spin and Colour Dynamics in Parton Splitting

An easy generalization of the previous result allows partons to have:

Spin: H = span({|1, ↑⟩ , |1, ↓⟩ , |2, ↑⟩ , |2, ↓⟩})

ρ(t) =


e−γ↑ta(0) e−

γ↑+γ↓
2 b(0)

e−
γ↑+γ↓

2 tb(0)∗ e−γ↓t(1 − a(0))
(1 − e−γ↑t)a(0) 0

0 (1 − e−γ↓t)(1 − a(0))

0

0

 (7)

Color: H = span({|1, r⟩ ,
∣∣1, g

〉
, |1, b⟩ , |2, r⟩ ,

∣∣2, g
〉

, |2, b⟩})

ρ(t) =



e−γrta(0) e−
γr+γg

2 b(0) e−
γr+γb

2 c(0)

e−
γr+γg

2 tb(0)∗ e−γgtd(0) e−
γg+γb

2 tf (0)

e−
γr+γb

2 c(0)∗ e−
γg+γb

2 tf (0)∗ e−γbt(1 − a(0)− d(0))
(1 − e−γrt)a(0) 0 0

0 (1 − e−γgt)d(0) 0
0 0 (1 − e−γbt)(1 − a(0)− d(0))

0

0


(8)
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Splitting in the Position and Momentum Spaces

We consider the restricted Fock space for distinguishable particles:

H = H1 ⊕ (H2 ⊗H3), Hi = L2(R3)

For each k⃗′ ∈ R3, we consider the Jump operator Lk⃗′ which acts on the states

|Ψ1,⃗k1
⟩ = (ei⃗k1 ·⃗x1 , 0) and |Ψ2,⃗k2 ;⃗k3

⟩ = (0, ei⃗k2 ·⃗x2ei⃗k3 ·⃗x3) in the following way:

L⃗k′

∣∣∣Ψ1,⃗k1

〉
=
∣∣∣Ψ2,⃗k′ ;⃗k1−⃗k′

〉
(1) L⃗k′

∣∣∣Ψ2,⃗k2 ;⃗k3

〉
= (0, 0) (2)

System Hamiltonian

HS = − h̄2

2m1
∇2

x⃗1
ψ1 ⊕

(
− h̄2

2m2
∇2

x⃗2
ψ2 ⊗ 13 + 12 ⊗− h̄2

2m3
∇2

x⃗3
ψ3

)
(9)
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Splitting in the Position and Momentum Spaces

Lindblad equation

∂ρ

∂t
= − i

h̄
[HS, ρ] +

∫
R3

γ(⃗k′)
(

L⃗k′ρL†
k⃗′
− 1

2
{L†

k⃗′
L⃗k′ , ρ}

)
d3⃗k′ (10)

Probability density of finding the system in a 1-particle state with a given momentum:
ρ1,⃗k1,1,⃗k1

(t) ≡ ⟨Ψ1,⃗k1
|ρ|Ψ1,⃗k1

⟩. Probability density of finding the system in a 2-particle

state with a given momentum for each particle: ⟨Ψ2,⃗k2 ,⃗k3
|ρ|Ψ2,⃗k2 ,⃗k3

⟩.

ρ̇1,⃗k1,1,⃗k1
(t) = −

(∫
R3

γ(⃗k′)d3⃗k′
)

ρ1,⃗k1,1,⃗k1
(t) (11)〈

Ψ2,⃗k2 ,⃗k3

∣∣∣ ρ̇(t)
∣∣∣Ψ2,⃗k2 ,⃗k3

〉
= γ(⃗k2) ρ1,⃗k2+⃗k3,1,⃗k2+⃗k3

(t) (12)
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Splitting in the Position and Momentum Spaces

We define Γ ≡
∫

R3 γ(⃗k′)d3⃗k′. By explicitly solving the equations, we obtain:

〈
Ψ1,⃗k1

∣∣∣ ρ(t)
∣∣∣Ψ1,⃗k1

〉
= e−Γt

〈
Ψ1,⃗k1

∣∣∣ ρ(0)
∣∣∣Ψ1,⃗k1

〉
(13)

〈
Ψ2,⃗k2 ,⃗k3

∣∣∣ ρ(t)
∣∣∣Ψ2,⃗k2 ,⃗k3

〉
=

γ(⃗k2)

Γ
(c − e−Γt)

〈
Ψ1,⃗k2+⃗k3

∣∣∣ ρ(0)
∣∣∣Ψ1,⃗k2+⃗k3

〉
(14)

Initial condition: ρ(0) = |Ψ0⟩ ⟨Ψ0|, with |Ψ0⟩ = (ψ1(⃗x1), 0) ∈ H (a pure state of a
single particle) =⇒ c = 1.
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Splitting as a result of system-bath interaction

Goal: derive a model for the bath and its interaction with the system that reproduces
the previous results.
Following [1], we consider a bath which is a continuum of harmonic oscillators:

H = HS + HB + V = ϵ1S ⊗ 1B + 1S ⊗ h̄
∫ ∞

0
a†(ω)a(ω)D(ω)dω + V (15)

We need to find Ak and Bk such that V = ∑k Ak ⊗ Bk , A†
k = Ak and B†

k = Bk
Jump operators in the degenerate case: Ak(ω = 0) = ∑n,m=1,2 |n⟩⟨n|Ak |m⟩⟨m| = Ak
System should be degenerate =⇒ HLS ∝ 1

One possible choice:

A1 = σx B1 =
∫ ωmax

−ωmax

B(ω) dω,with

{
B(ω) = h(ω)aω,
B(−ω) = h(ω)a†

ω,
for ω > 0 (16)

=⇒ V = σx ⊗
∫ ωmax

0
h(ω)(a†

ω + aω)dω =
∫ ωmax

0
h(ω)(L + L†)(a†

ω + aω)dω (17)
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Splitting as a result of system-bath interaction

γ11(ω) = 2πtr(B1(ω)B1ρth) =

{
2πh2(ω0)[n̄(ω0) + 1], ω > 0
2πh2(ω0)n̄(ω0), ω < 0

(18)

Considering a high temperature regime, n̄(ω) + 1 ≈ n̄(ω) and an Ohmic spectral
density, J(ω) = h2(ω) = ηωθ(ωmax − ω), we calculate γ11(0) as the ω → 0 limit of
this expression:

γ11 = lim
ω0→0

2πJ(ω0)n̄(ω0)

= 2π lim
ω0→0

ηω0θ(ωmax − ω0)

eω0/T − 1
= 2πηT

(19)
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Splitting as a result of system-bath interaction

d
dt

ρ(t) = − i
h̄(((((((((
[σxσxS11(0), ρ(t)] + γ11(0)

(
σxρ(t)σx − 1

2{σxσx, ρ(t)}
)


∂a
∂t
(t)

∂b
∂t
(t)

∂b∗

∂t
(t) −∂a

∂t
(t)

 = γ11(0)

(
d(t)− a(t) −i Im[b(t)]
i Im[b(t)] a(t)− d(t)

)
, γ11(0) = 2πηT

(20)

ρ(t) =

 1
2

(
(a0 + d0) + (a0 + d0)e−2γt

)
x0 + y0e−2γt

x0 − y0e−2γt 1
2

(
(a0 + d0)− (a0 + d0)e−2γt

)
 (21)
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Splitting as a result of system-bath interaction

If we impose that the system starts in the pure state |1⟩⟨1|, we obtain:

ρ(t) =

 1
2

(
1 + e−2γt

)
0

0 1
2

(
1 − e−2γt

)
 (22)

lim
t→∞

ρ(t) =

(
1
2 0
0 1

2

)
(23)

Problem: the system evolves towards the maximally mixed state, with maximum
entropy. This is because we considered a reversible splitting process, whereas splitting
is known to be irreversible. In the interaction Hamiltonian there are |1⟩ → |2⟩ and
|2⟩ → |1⟩ transitions. The latter would correspond to two particles fusing into one, a
process we do not consider in our phenomenological splitting model.
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Imposing irreversibility

A possible solution is to consider an effective non-hermitian Hamiltonian:

V =
∫ ωmax

0
h(ω)σ−(a†

ω + aω)dω (24)

We now consider A1 = σ− = L (in the {|1⟩ , |2⟩} basis) and keep B1 the same ⇒
γ11(0) = 2πηT as before.
We obtain a Lindblad equation similar to 5, with an extra term due to HLS:

d
dt

ρA(t) = − i
h̄
[
H + HLS, ρ(t)

]
+

1

∑
k,ℓ

γkℓ(0)
(

Aℓ(0) ρA(t)A†
k(0)− 1

2

{
A†

k(0)Aℓ(0), ρA(t)
})

= − i
h̄
[S11(0)L†L, ρA(t)] + γ11(0)

(
LρA(t)L† − 1

2{L†L, ρA(t)}
)

(25)
This equation describes an irreversible process as we desired, but introduces a
Lamb-shift of S11(0) between the 2 levels.
Summer 2025 In-medium propagation of particles in an Open Quantum System (OQS) approach 15 / 18



Imposing Irreversibility

Considering an Ohmic spectral density, we can calculate this shift:

S11(0) = −P.V.
∫ ωmax

−ωmax

dω′Tr
[
B1(ω

′)B1ρB
]

ω′ = −ωmax

4
(26)

The Lindblad equation reduces to a form similar to equation 5, but with this new term:

∂ρ

∂t
≡
(

∂a
∂t (t)

∂b
∂t (t)

∂b∗
∂t (t) − ∂a

∂t (t)

)
=

i
h̄

(
0 −S11(0)b(t)

S11(0)b(t)∗ 0

)
+ γ

(
−a(t) − b(t)

2
− b(t)∗

2 a(t)

)
(27)

Imposing the initial condition ρ(0) = |1⟩ ⟨1| we obtain the same result as before:

ρ(t) =

(
e−γt 0

0 1 − e−γt

)
. (28)
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Next steps

The non-hermitian Hamiltonian seems like an ad hoc solution that also introduces
problems in the form of the Lamb-shift. There should be a more fundamental
reason for the irreversible behavior.

Describe the system-bath interaction in the continuous position and momentum
basis.

Quantify the coupling in the vacuum and QGP to calculate the difference in decay
rates between the two cases.
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