X(3872) Studies in LHC Run 3

Novel probes of the Quark-Gluon Plasma medium

LIP Summer Internship 2025 Final Workshop

RICARDO RIBEIRO, LEKAI YAO, PEDRO CHAN, MARIANA SOARES,

NUNO LEONARDO, HENRIQUE LEGOINHA

Exotic States and X(3872)

- Hadrons: particles made of quarks and gluons.
 - mesons and baryons
 - exotic states: tetraquarks, pentaquarks, glueballs and hybrids
- X(3872): the first exotic state discovered in 2003 by the Belle experiment.
 - different explanations for its structure:
 - charmonium state
 - D0 and anti-D0* molecule
 - tetraquark
 - their admixture

charmonium state

molecule

tetraquark

X(3872) as a probe of the QGP

- The interaction between QGP and X(3872)
 - Coalescence
 - Coalescence mechanisms could enhance the X(3872) production yield.
 - Screening
 - Due to Screening effects, a longer distance between the quarks and antiquarks of X(3872) could lead to a higher dissociation rate.
- Why do we want to study the X in HIC?
 - Learn about the nature of X(3872):
 - a compact tetraquark configuration with a radius
 ~0.3 fm?
 - a molecular state with a radius greater than 1.5 fm?
 - Establish the first observation of X(3872) in Pb-Pb collisions
 - Explore the QGP mechanisms

screening effects

Motivation & Strategy

➤ How to study the interaction between QGP and X(3872)?

For both **pp** and **PbPb**:

- o preparation: data & simulation
- o event selection: single variable optimization & multi-variable ML
- o **efficiency** correction
- o cross section measurement
- Nuclear Modification Factor (RAA) calculation
- ➤ Goals for summer project:

For **pp**

calculate the ratio of cross sections

Compact Muon Solenoid (CMS)

CMS is a general purpose detector

- It has a cylindrical shape with 15m diameter and 21m in length
- Formed of sub-detector layers; most relevant for this project:
 - muon chambers
 - silicon trackers
- Particles are reconstructed using an algorithm combining the signals provided by the subdetectors
- A trigger system decides in real time whether to record events or to discard them

Data & Simulation

- pp and PbPb data collected by CMS in LHC Run3 ($\sqrt{s} = 5.36 TeV$)
 - o pp: 2024 (455 pb^{-1}) -> in this study
 - o PbPb: 2023 (1.72 nb^{-1}), 2024 (1.67 nb^{-1}), 2025 (ongoing) -> for future study
- Monte Carlo (MC) simulation
 - simulations done with detector conditions of each year
- Candidate reconstruction
 - o select pairs of muons $(\mu^+\mu^-)$ and pairs of tracks $(\pi^+\pi^-)$ originating from a common point

Muon & Track Selection

Muons

☐ Soft muons:

- normalized $\chi^2 \le 1.8$
- Hits:

tracker layers ≥ 6 pixel Layers ≥ 1

Displacement from vertex:

dz < 35 cmdxy < 4 cm

□ Acceptance region:

• $p_T \ge 3.5 GeV$

- & |n| < 1.2
- $p_T \ge (5.47 1.89 \times |\eta|) \text{ GeV } \& 1.2 \le |\eta| < 2.1$
- $p_T \ge 1.5$ GeV

 $8 |\eta| < 2.4$

☐ HLT matching:

Path: "HLT_PPRefL1DoubleMu0_v6"

Filter: "hltL1fL1sDoubleMu0L1Filtered0PPRef"

Tracks

☐ Quality:

- High purity tracks
- $\sigma_{p_T}/p_T < 0.1$
- N_{hits} (pixel + tracker hits) ≥ 11
- $\frac{\chi^2}{ndf}/N_{hits} < 0.18$

☐ Acceptance:

- $p_T > 0.5 \text{GeV}$
- $|\eta| < 2.4$

Candidates

- ☐ Fiducial region:
 - $p_T > 5 \text{GeV}$
 - |y| < 2.4

Di-muon system

- ☐ Opposite muon charges
- ☐ Common vertex probability > 1%
- \square System's mass within 0.15 GeV from J/Ψ mass

$X(3872) \& \psi(2S)$

Decay channels:

- $X(3872) \rightarrow J/\psi + \rho \rightarrow \mu^+ + \mu^- + \pi^+ + \pi^-$
- $X(3872) \rightarrow J/\psi + \pi^+ + \pi^- \rightarrow \mu^+ + \mu^- + \pi^+ + \pi^-$
- $\Psi(2S) \rightarrow J/\psi + \pi^+ + \pi^- \rightarrow \mu^+ + \mu^- + \pi^+ + \pi^-$

Sideband region is defined as [3.6,3.66] && [3.72,3.83] && [3.91,4.0] GeV

Mass Spectrum of Ψ(2S) and X(3872) before applying any selection cuts, only preselection cuts applied

Variables for X(3872) selection

Normalized Flight Length: 3D distance between the primary vertex and the secondary vertex where X(3872) is formed, normalized by its uncertainty

Normalized Flight Length in 2D: distance in the transverse plane between the primary vertex and secondary vertex, normalized by its uncertainty

Pointing Angle (α): opening angle between the PV -> SV flight vector and the reconstructed X(3872) candidate momentum

Projected Pointing Angle (\theta): opening angle between the reconstructed X(3872) momentum and the PV -> SV vector projected onto the transverse plane (xy)

dR: angular distance between each pion track and J/ψ

Variable distributions for Signal and Background

Pre-selection cuts

pre-cut1: B_chi2cl > 0.003

pre-cut2: B_Qvalueuj < 0.2 && pre-cut1

Optimization

- ➤ Goal : discriminate signal from background
- Method: compare the performance and figure of merit(FOM) from different cuts
 - FOM is calculated for $\psi(2S)$ and X(3872) **separately**.
 - The max FOM of X(3872) is considered as "best cut".

$$FOM = \frac{f_S \times S_{MC}}{\sqrt{f_S \times S_{MC} + f_B \times B}}$$

$$f_S = \frac{S_{data}}{S_{MC}}$$
 $f_B = \frac{B(signal\ region)}{B(sideband\ region)}$

Optimization of Different Variables

Mass Distribution after Optimal Cuts

optimal cut1: B_norm_svpvDistance < 1.92

optimal cut2: B_Qvalueuj < 0.095

Mass Distribution after Optimal Cuts

optimal cut3: B_norm_svpvDistance_2D < 1.030

optimal cut4: B_trk1dR<0.639

Mass Distribution after Optimal Cuts

optimal cut5: B_trk2dR<0.64

- optimal cuts: optimal cut2 && cut4 && cut5
- B_Qvalueuj < 0.095 && B_trk1dR<0.639 && B_trk2dR<0.64

Fitting Method

- $\psi(2S)$: double gaussian
- X(3872): single gaussian
- background : 3rd order Chebychev polynomial
- $N(X(3872)) = (2.87 \pm 0.19) \times 10^3$
- $N(\psi(2S)) = (3.11 \pm 0.03) \times 10^4$

$$m_{J/\psi\pi^+\pi^-}$$
 fit result

Cross Section

$$A = \frac{N(Acc\ cuts)}{N(GEN)}$$

$$\epsilon = \frac{N(All\ cuts)}{N(Acc\ cuts)}$$

$$\sigma = \frac{N}{A \times \epsilon \times BR \times L}$$

- N : Yield of signal <- Fit
- A : acceptance <- MC
- ϵ : efficiency <- MC
- BR : branching fraction <- PDG
- L: luminosity <- CMS

Ratio of Cross Section times Branching Fraction

$$R = \frac{\sigma(pp \to X(3872) + anything) \times BR(X(3872) \to J/\psi\pi^{+}\pi^{-})}{\sigma(pp \to \psi(2S) + anything) \times BR(\psi(2S) \to J/\psi\pi^{+}\pi^{-})}$$

$$R = \frac{N_{X(3872)} \times A_{\psi(2S)} \times \epsilon_{\psi(2S)}}{N_{\psi(2S)} \times A_{X(3872)} \times \epsilon_{X(3872)}}$$

- $BR(X(3872) \rightarrow J/\psi \pi^+\pi^-)$ has large uncertainties according to PDG[1]
- a previous study based on CMS Run1 data calculated this ratio

Systematic Uncertainties from Fitting

- Method1
 - $\psi(2S)$: double gaussian (σ_1, σ_2)
 - X(3872) : double gaussian ($C\sigma_1$, $C\sigma_2$)
 - background : 3rd order Chebychev polynomial

- Method2
 - ψ(2S) : double gaussian
 - X(3872) : double gaussian
 - background: 3rd order Chebychev polynomial

Systematic Uncertainties from Fitting

Method3

ψ(2S) : double gaussian

X(3872) : single gaussian

background: 4th order Chebychev polynomial

 Total systematic uncertainties from fitting are the quadrature sum of the maximum uncertainties of signal and background model variations

Statistic & Systematic Uncertainties

- Systematic uncertainties from alternative fitting methods
- Statistic uncertainties from fitted data

Table1: Systematic Uncertainties

	$\psi(2S)$	X(3872)
Method1	0.46%	4.89%
Method2	0.09%	14.5%
Method3	1.02%	0.15%
Total	1.12%	14.5%

Table2: Statistic Uncertainties

	$\psi(2S)$	X(3872)
Fitting	1.01%	6.70%

Result & Comparison

The result of this study

- pp collisions at $\sqrt{s} = 5.36 TeV$ (CMS Run 3 pp)
- Fiducial region: $p_T > 5GeV$, |y| < 2.4

$$R = (7.60 \pm 0.52(stat.) \pm 1.10(syst.)) \times 10^{-2}$$

in comparison with the result of previous study

- pp collisions at $\sqrt{s} = 7TeV$ (CMS Run I)[1]
- Fiducial region: $10GeV < p_T < 50GeV$, |y| < 2.4

$$R = (6.56 \pm 0.29(stat.) \pm 0.65(syst.)) \times 10^{-2}$$

The results are **consistent within uncertainties**, providing a certain degree of validation for this study

 $m_{J/\psi\pi^+\pi^-}$ fit results of this study

 $m_{J/\psi\pi^+\pi^-}$ fit results of previuos study[1]

Summary & Outlook

The study is based on CMS Run3 pp data($\sqrt{s} = 5.36 TeV$)

- Selection study for X(3872), ψ(2S)
- Different fitting methods
- Measurement of cross sectio ratio
- Statistic & Systematic uncertainties

In the future

- MC validation
- ML tools for multi-variable selection
- More complete uncertainties study
- PbPb dataset analysis

BACKUP

Correlation Matrix

sideband region is defined as
[3.6,3.66] && [3.72,3.83] &&
[3.91,4.0] GeV

Correlation Matrix of different variables from the sideband data

- 0.50

- 0.25

- 0.00

-0.25

-0.50

-0.75

Correlation Matrix

Correlation Matrix of different variables from $\psi(2S)$ MC

- 0.75

- 0.50

- 0.25

- 0.00

- -0.25

-0.50

-0.75

Correlation Matrix

Correlation Matrix of different variables from X(3872) MC

- 0.50

- 0.25

- 0.00

-0.25

-0.50

Fit MC

- $\sigma_{eff} = 6.17 \times 10^{-3}$
- sideband region [3.6,3.66] && [3.72,3.83] is out of mean $\pm\,4\sigma_{eff}$ region

- $\sigma_{eff} = 8.27 \times 10^{-3}$
- sideband region [3.72,3.83] && [3.91,4.0] is out of mean \pm $4\sigma_{eff}$ region

Sideband Region

• sideband region is [3.6,3.66] && [3.72,3.83] && [3.91,4.0] GeV

Performance of Optimal Cuts

- optimal cuts: optimal cut2 && cut4 && cut5
- B_Qvalueuj < 0.095 && B_trk1dR<0.639 && B_trk2dR<0.64

 $m_{J/\psi\pi^+\pi^-}$ distribution after optimal cuts