Update on the u_{μ} Systematics #### **Guilherme Soares** gmachado@cern.ch 29th May 1/10 29th May 2/10 ## Index - 1 ν_{μ} Error Estimation - 2 Activity Cuts - US QDC - Scifi Activity - 3 Final Remarks 3/10 ## Estimating Systematic ν_{μ} Errors ν_{μ} event selection goes through the following cuts : - Fiducial Volume - Scifi: Vertical [+200;-336]; Horizontal [+300;-200] (+4.8%) - DS: Horizontal Bars 70-105 and Vertical 10-50 (+8.3%) - Track requires intercepting the first Scifi plane - Sum of DOCA between track and hits < 3 cm - > 35 Scifi Hits - QDC for Upstream Muon System > 600 - Maximum of 10 hits in the Downstream Muon System Used partition 0 through 50 from /eos/experiment/sndlhc/MonteCarlo/Neutrinos/Genie/sndlhc 13TeV down volTarget 20fb-1 SNDG18 02a 01 000/, with a total of 40272 ν events Activity Cuts 4/10 ## Plan and Common Event Selection Use 2023 Testbeam data to select events with showers that fulfill each other criteria: - To analyze the US QDC select events with > 35 Scifi Hits - To analyze the minimum Scifi hits select events with US QDC > 600 a.u. Produce distribution plots and find reasonable criteria to vary MC data comes from 2 \times 10 5 MC π^{-} events with 180 GeV/c 2 Applied event filter : - Only consider Scifi hits within 26 ns of event start - At least 10 Scifi hits - At least 1 hit per station on X and Y projection each up to 3rd plane For events that pass the initial filter: - Scifi hits around for [-0.5;+1.2] clk cycles around t_{ref} for each plane and orientation - Only consider US hits when thit < tref1H + 3clk cycle Doing it individually for each SiPM instead of for the average timestamp of the hit for simplicity purposes, and not removing small SiPM responses (QDC_S = QDC_I) which may lead to a factor of 4/3 between MC and Testbeam data #### Additional Testbeam data cuts: ■ No event during previous 150ns # **US QDC Requirement** US QDC distributions have similar shapes Find a scale factor based on reference points Apply scale factor on MC QDC response and check ν_{μ} selection efficiency influence Perform a Gaussian fit to peak of the distribution Refine fit to a range of $\mu \pm 1.5\sigma$ to isolate maximum of the distribution Get cumulative distribution for QDC > μ and define 3 more points Perform linear regression to get the Scale Factor #### 2023 Testbeam #### **Monte Carlo** 5/10 ## Cumulative Distributions and Reference Points #### 2023 Testbeam | Sample | Max | 66.3 % | 95.5 % | 99.7 % | |-------------|-------|--------|--------|--------| | Testbeam | 6339 | 9250 | 11650 | 13750 | | Monte Carlo | 13020 | 22450 | 31350 | 38250 | ### **Reference Point Regressions** ### **Monte Carlo** #### Scale Factor $$= (3.44 \pm 0.03)^{-1}$$ ### Scale Factor $= (2.646 \pm 0.007)^{-1}$ | Cut Set Baseline | | Surviving
Events | Selection
Efficiency (%) | Relative
Baseline Error (%) | | |------------------|--------------|---------------------|-----------------------------|--------------------------------|--| | | | 1251 | 3.11 | - | | | Scale Factor | 3.44
2.64 | 931
999 | 2.31
2.48 | -25.7
-20.3 | | ### Scale Factor = 3.44^{-1} ### Scale Factor = 2.64^{-1} | Sam | Max | 66.3 % | 95.5 % | 99.7 % | | |-------------|-----------|--------|--------|--------|-------| | Testbeam | | 6339 | 9250 | 11650 | 13750 | | | Baseline | 13020 | 22450 | 31350 | 38250 | | Monte Carlo | SF = 3.44 | 3850 | 6550 | 9150 | 11150 | | | SF - 2 64 | 5005 | 8550 | 11850 | 14450 | # Scifi Multiplicity Scifi Hit multiplicity distributions has an early peak that is removed by the >35 hits criterion #### Fit peak with a Landau Distribution Retrieve variation from difference in σ or a combination of MPV and σ | Sample | MPV | σ | | |-------------|------------------|-----------------|--| | Testbeam | 17.69 ± 0.02 | 2.49 ± 0.01 | | | Monte Carlo | 14.85 ± 0.07 | 1.54 ± 0.05 | | | Δ | 3.74 ± 0.07 | 0.95 ± 0.05 | | #### 2023 Testbeam #### **Monte Carlo** 8 / 10 # Scifi Activity Systematic Errors | Minimum Scifi
Hits Required | | Surviving | Selection | Relative | |--|----|-----------|----------------|--------------------| | | | Events | Efficiency (%) | Baseline Error (%) | | Baseline | 35 | 1251 | 3.11 | - | | $\pm \Delta_{\sigma}$ | 34 | 1261 | 3.13 | +0.6 | | $\perp \Delta_{\sigma}$ | 36 | 1243 | 3.09 | -0.6 | | $\pm (\Delta_{\sigma} + \Delta_{MPV})$ | 30 | 1284 | 3.19 | +2.6 | | $\pm (\Delta_{\sigma} + \Delta_{MPV})$ | 40 | 1218 | 3.02 | -2.9 | 10 / 10 ## Ollow Op - Scifi Hit filter was updated to work properly with Monte Carlo - Need to check filter influence in the selection efficiency of the Monte Carlo samples - Currently redoing the Scifi Fiducial volume systematic error analysis with updated 2023 Testbeam geometry - DS Fiducial volume error estimation will be aprimorated using a sample of TI18 muon events with Scifi tracks that generate showers and can be extrapolated to the DS system - Sum of DOCA will also use shower generating muons, but with DS tracks that can be extrapolated to the Scifi - Will check shower influence on the DS through Testbeam events that produce showers on the 3rd wall. Although no DS track can be reconstructed, the number of hits on the 1st DS plane should be a good proxy for how much the hit variation should be - Scifi Activity Systematic Uncertainties are +2.6% - US QDC selection looks like the biggest contribution to Systematic Uncertainties