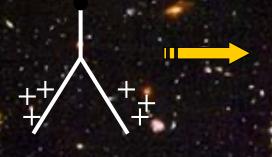
Raios Cósmicos Masterclasses Pierre Auger

Uma [nova] janela para

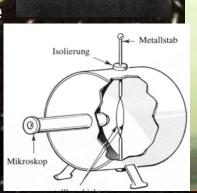
A nossa [IN]compreensão do Universo

Pedro Abreu LIP, IST


Masterclasses Pierre Auger, Ciência Viva no Laboratório LIP, Lisboa 8.07.2025

Séc. XIX: o eletroscópio era utilizado desde Coulomb para estudar as Forças Elétricas.

Problema: o eletroscópio descarregava-se sozinho com o tempo!

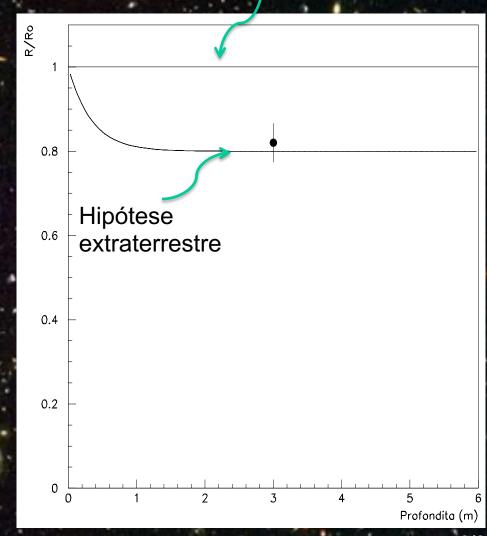

PORQUÊ ?!

Cargas no ar ? Ionização ?
ar deixa de ser um bom isolante

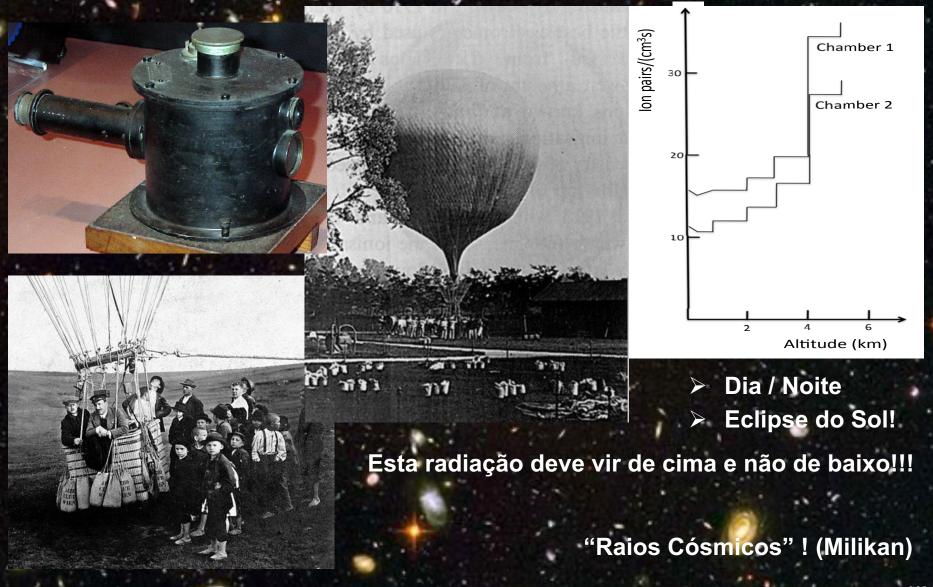
1896: descoberta a radioatividade. Radioatividade natural da Terra?

O efeito devia diminuir com a altitude

1907: Padre Theodore Wulf melhora o eletroscópio e sobe à Torre Eiffel Não diminuía significativamente...

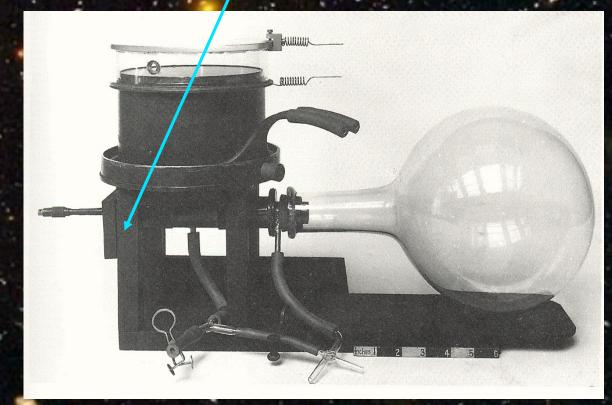


1910: Domenico Pacini: Medidas em profundidade



Hipótese terrestre

Viktor Hess, 1912: 10 Vôos em balão de ar quente até altitudes de 5 km!!



O primeiro acelerador de partículas só apareceu na década de 1950 Os raios cósmicos eram a única fonte de partículas muito energéticas

A câmara de nevoeiro (Wilson, 1911) tornou possível a observação da trajetória de uma partícula eletricamente carregada

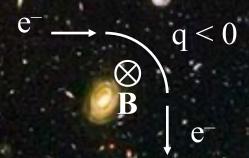
Charles T.R. Wilson Prémio Nobel 1927

Paul Dirac, 1928–30: Equação para o eletrão muito energético

que prevê anti-matéria!

$$E=mc^2$$

$$E^2 = m^2 c^4 + c^2 p^2$$


$$E = \sqrt{m^2c^4 + c^2p^2}$$

partícula com energia E<0 ⇔ ANTI-partícula com E >0

Deviam existir ANTI-PARTÍCULAS!!!

Carl Anderson constrói uma câmara de nevoeiro com grande campo magnético

Antimatéria descoberta nos Raios Cósmicos

Carl Anderson

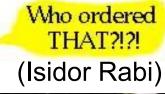
Prémio Nobel 1936 c/ Viktor Hess

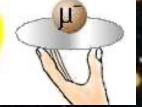
o **POSITRÃO** é o anti-eletrão!

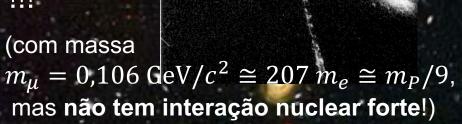
Raios Cósmicos – um laboratório de física de partículas!

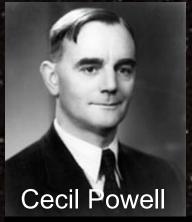
1934

1934: Yukawa propõe uma teoria para a força forte (nuclear), mediada por uma partícula de massa entre a do eletrão e a do protão: o MESOTRÃO (de massa $\cong 0.140~{\rm GeV}/c^2$)


Hideki Yukawa (Prémio Nobel 1949)


Anderson and Neddermeyer transportaram o detetor para a montanha (Peak mountain)




1937: Descobrem o muão (μ) !!!

Raios Cósmicos – um laboratório de física de partículas!

1947: Powell (com César Lattes e Giuseppe Ochielini) descobre(m) o pião (π)

Prémio Nobel 1950

No mesmo ano, Rochester e Butler descobrem os Kaões, partículas de massa intermédia entre os piões e o protão: $m_K \cong 0.5 \text{ GeV}/c^2$

Mas estas novas partículas tinham um comportamento muito estranho, tendo-lhes sido associado um novo número quântico – a estranheza.

Muitas outras descobertas se seguiram, com o advento dos aceleradores artificiais, de outras partículas com as propriedades mais variadas.

PARTÍCULAS E INTERACÇÕES FUNDAMENTAIS

constituintes da matéria

5piii - 1/2, 5/2, 5/2,					
Leptões spin =1/2			Quarks spin =1/2		
Sabor	Massa GeV/c ²	Carga Eléctrica	Sabor	Massa Aprox. GeV/c ²	Carga Eléctrica
ν _L neutrino* mais leve	(0-2)×10 ⁻⁹	0	u up	0.002	2/3
e electrão	0.000511	-1	d down	0.005	-1/3
v _M neutrino* intermédio	(0.009-2)×10 ⁻⁹	0	C charm	1.3	2/3
μ muão	0.106	-1	S strange	0.1	-1/3
ν _н neutrino* pesado	(0.05-2)×10 ⁻⁹	0	t top	173	2/3
au tau	1.777	-1	b bottom	4.2	-1/3

*Ver em baixo o parágrafo sobre neutrinos.

Spin é o momento angular intrínseco das partículas. O spin é dado em unidades de ħ, que é a unidade quântica de momento angular, com $h = h/2\pi = 6.58 \times 10^{-25}$ GeV s =1.05×10⁻³⁴ J s.

Cargas eléctricas são dadas em unidades de carga eléctrica do protão. Em unidades SI, a carga eléctrica do protão é 1.60×10⁻¹⁹ coulomb.

Estrutura dentro do Átomo Neutrão Núcleo Tamanho ≈ 10⁻¹⁴ m

> Se os protões e neutrões tivessem um tamanho de 10 cm, então os quarks e os

BOSÕES

pin = 1	Electrofraca		
Carga léctrica	Massa GeV/c ²	Nome	
		γ fotão	
	80.39	W-	
+1	80.39	W ⁺ bosões W	
	91.188	Z bosão Z	
0 1 +1	80.39 80.39	W ⁻ W ⁺ bosões W Z	

	-,			
Forte (cor) spin = 1				
Nome	Massa GeV/c ²	Carga Eléctrica		
g gluão	0	0		
Dan Zanda III ana anima a O				

Bosão de Higgs spin = 0					
Nome	Massa GeV/c ²	Carga Eléctrica			
H Higgs	126				

O bosão de Higgs é um elemento fundamental do Modelo Padrão. A sua descoberta confirma o mecanismo pelo qual as partículas elementares adquirem massa.

Só os quarks e os gluões é que possuem "carga de cor" e são sensíveis à interacção forte. Cada quark pode ter uma de três cores ("vermelho", "verde", "azul"). Mas estas não têm nada que ver egadas interagem trocando cando gluões.

> confinados em partículas ento (ligação) resulta das

coloridos". Quando as forças de cor entre elas aumenta. Esta energia pode ser convertida em sucessivos pares quark-antiquark. Estes quarks (q) e antiquarks (q)

Dois tipos de hadrões foram observados na natureza: mesões qq e bariões qqq. Entre os muitos tipos de bariões observados temos o protão (uud), antiprotão (ūūd), e neutrão (udd). As cargas eléctricas dos quarks somam-se para o protão ter carga 1 e o neutrão carga 0. Entre os vários tipos de mesões temos o pião π^+ ($u\bar{d}$), kaão K $^-$ ($s\bar{u}$), e B 0 ($d\bar{b}$).

Saiba mais em ParticleAdventure.ora

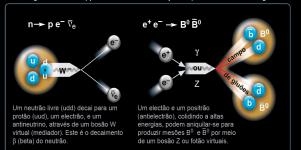
combinam-se em hadrões, que são as partículas observáveis.

http://www.cpepphysics.org/fundamental-particles/

A unidade de Energia em

ao atravessar a diferença d em que 1 GeV = 109 eV =

A massa do protão é 0.938

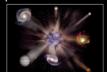

Os neutrinos são produzidos no Sol, supernovas, reactores nucleares, colisões em aceleradores, e muitos outros processos. Qualquer neutrino pode ser descrito como um de três estados de sabor de neutrinos: v_{o}, v_{o} , ou v_r , de acordo com o tipo de leptão associado na sua produção. Cada estado destes é uma mistura quântica de três estados de massa de neutrinos $\nu_{\rm L}, \nu_{\rm M},$ e $u_{\rm H}$, para os quais os intervalos de massas são indicados na tabela. O estudo dos neutrinos pode ajudar à compreensão da assimetria matéria--antimatéria e da evolução das estrelas e das estruturas das galáxias.

Matéria e Antimatéria

Para cada tipo de partícula existe o correspondente tipo de antipartícula, indicado com uma barra sobre o símbolo da partícula (excepto se se mostrar a carga + ou -). A partícula e a antipartícula têm a mesma massa e spin mas cargas eléctricas opostas. Alguns bosões electricamente neutros (por ex., Z^0 , γ , e $\eta_c = c\bar{c}$, mas não $K^0 = d\bar{s}$) são as próprias antipartículas.

Processos com Partículas

Estes diagramas são concepções artísticas. Áreas alaranjadas representam as núvens de gluões.



Interaccão Interaccão Interaccão Interacção Fraca Electromagnética Propriedade Gravítica Forte (Electrofraca) Actua em: Massa - Energia Sabor Carga de cor Partículas afectadas: Quarks, Leptões Todas Quarks, Gluões Gravitão W+ W- Z0 Partículas mediadoras: Gluões (ainda por observar) 10-41 Intensidade a 3×10⁻¹⁷ m 10 - 4

Mistérios por resolver

Motivados por novas questões na nossa compreensão física do Universo, os físicos de partículas seguem caminhos diferentes na direcção de novas descobertas maravilhosas. As experiências poderão vir a encontrar dimensões extra de espaço, buracos negros microscópicos, ou sinais da teoria das cordas.

Porque acelera o Universo?

A expansão do Universo parece estar a acelerar. Será devido à Constante Cosmológica de Einstein? Se não, poderão as experiências vir a revelar novas forcas da Natureza ou até dimensões (escondidas) de espaço?

Onde está a Antimatéria?

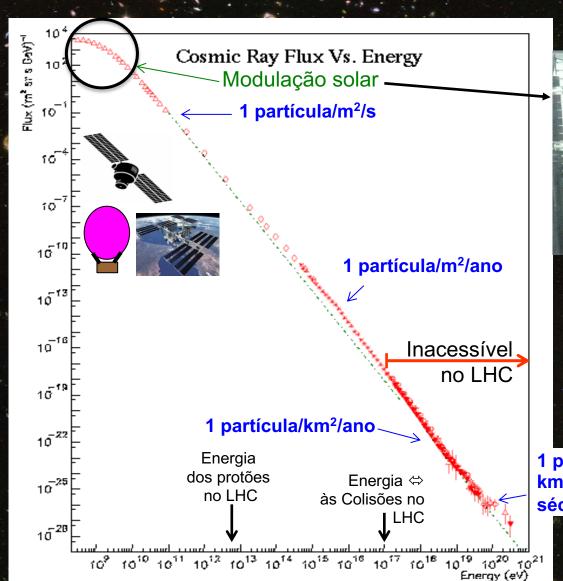
Matéria e antimatéria terão sido criadas em iquais quantidades no Big Bang. Porque é que agora vemos só matéria, à excepção de quantidades diminutas de antimatéria criadas em laboratório ou nos Raios Cósmicos?

O que é a Matéria Escura?

Grande parte da massa observada nas galáxias e aglomerados de galáxias é formada por matéria invisível. Pode esta matéria escura ser feita de novos tipos de partículas que apenas interagem fracamente com a matéria normal?

Existem Dimensões Extra?

Uma indicação para dimensões extra de espaço pode ser a baixíssima intensidade da forca gravítica, quando comparada com as outras três forcas fundamentais da Natureza (um iman pode levantar um clip, sobrepondo-se à gravidade exercida por todo o planeta Terra).


Raios Cósmicos – Os maiores aceleradores no Universo!

Fluxo em função da energia (partículas que nos chegam)

2 ordens de grandeza em

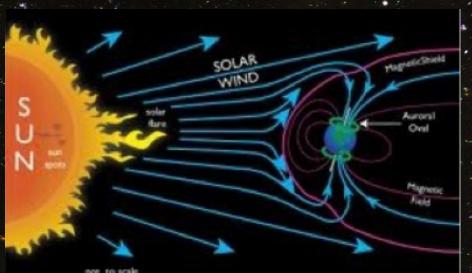
Energia no centro de massa, E_{CM} , é a energia disponível numa colisão:

LHC – Colisão frontal: $E_{CM} = 2E_P$

1 partícula/ km²/ século!

Raio Cósmico – Colisão alvo "fixo":

$$E_{CM} = \sqrt{2mE_P}$$


11 ordens de grandeza em

Energia

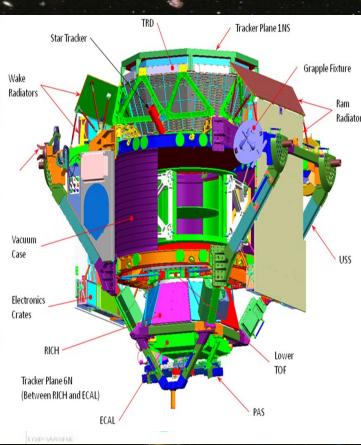
Raios Cósmicos – origem das Auroras Boreais/Austrais

Partículas carregadas provenientes do Sol e de outros locais, com energias "baixas", são desviadas para os pólos pelo campo magnético da Terra, levando à Aurora Boreal no Pólo Norte e Aurora Austral no Pólo Sul

17 de fevereiro 2024

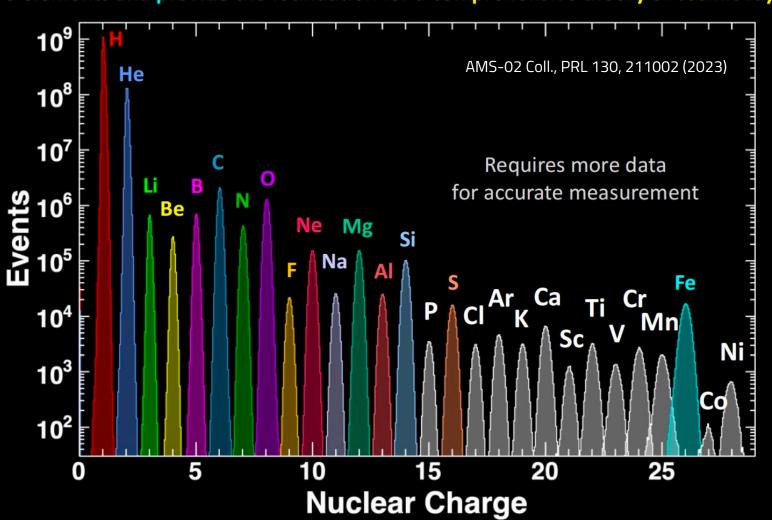
pedro abreu - partículas e raios cósmicos

Raios Cósmicos – Deteção no espaço


(dos balões à Estação Espacial Internacional)

AMS-02

AMS-02 foi instalado na ISS em 2011 e funcionará até 2028

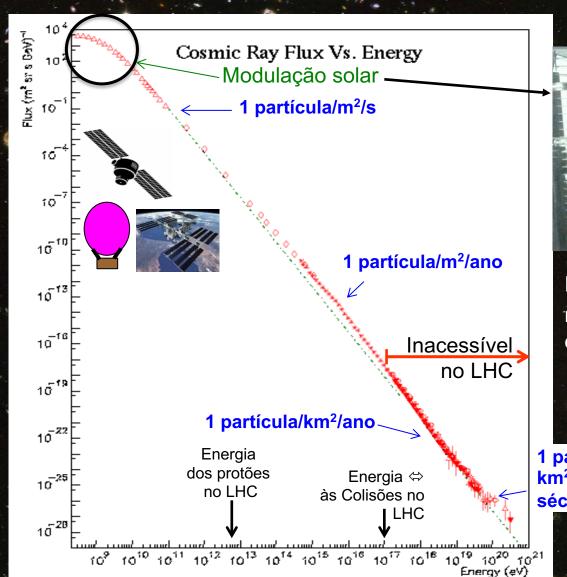

17 de fevereiro 2024

pedro abreu - partículas e raios cósmicos

Um passeio no espaço para "reparar" AMS-02

AMS determination of Cosmic Ray Nuclei

AMS will provide complete and accurate spectra for the 29 elements and provide the foundation for a comprehensive theory of cosmic rays.


Raios Cósmicos – Os maiores aceleradores no Universo!

Fluxo em função da energia (partículas que nos chegam)

ordens de grandeza em

Energia no centro de massa, E_{CM} , é a energia disponível numa colisão:

LHC – Colisão frontal: $E_{CM} = 2E_P$

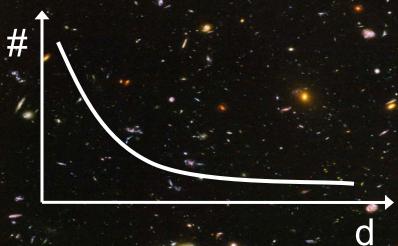
1 partícula/ km²/ século!

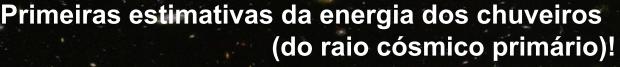
Raio Cósmico – Colisão alvo "fixo":

 $E_{CM} = \sqrt{2mE_P}$

11 ordens de grandeza em

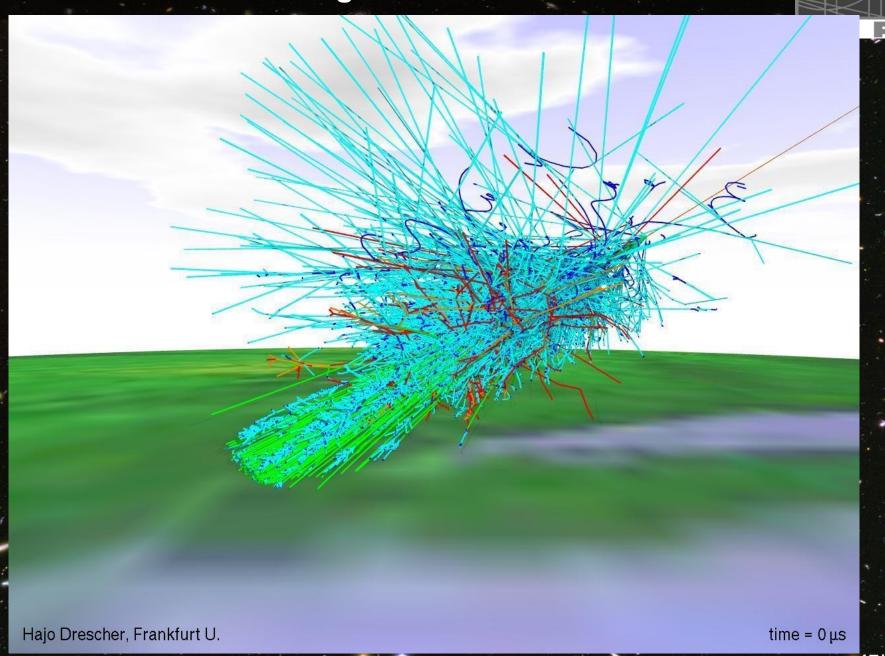
Energia

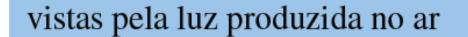

Raios Cósmicos – Chuveiros de partículas



Pierre Auger, 1938

Coincidências!

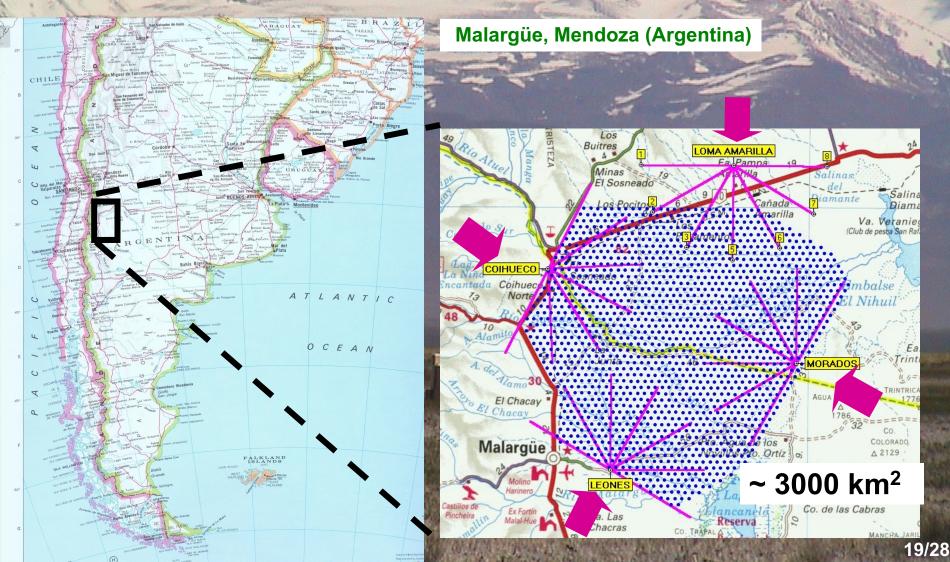



17 de fevereiro 2024

pedro abreu - partículas e raios cósmicos

Raios Cósmicos de Energia Extrema – Chuveiros de Partículas

Raios Cósmicos de Energia Extrema – Chuveiros de Partículas


Raios Cósmicos com E>10¹⁴ eV originam chuveiros de partículas na atmosfera

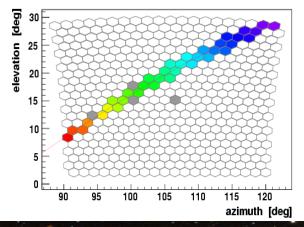
ou detectadas no solo por amostragem!

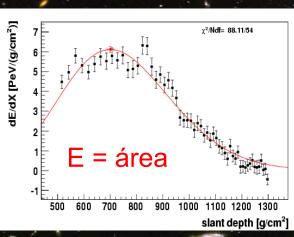
1 protão/pião: 100 muões: 10000 e⁻/e⁺/γ

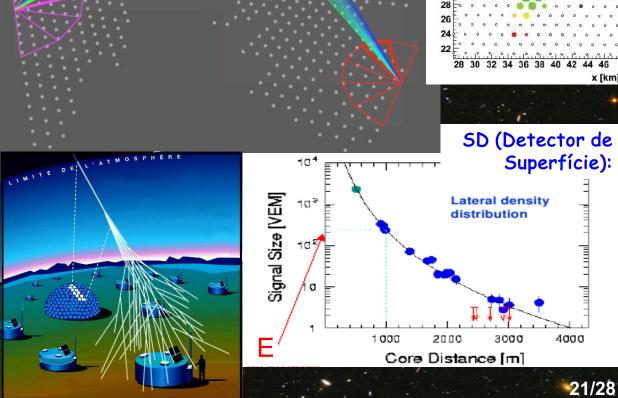
milhões de partículas espalhados por km²

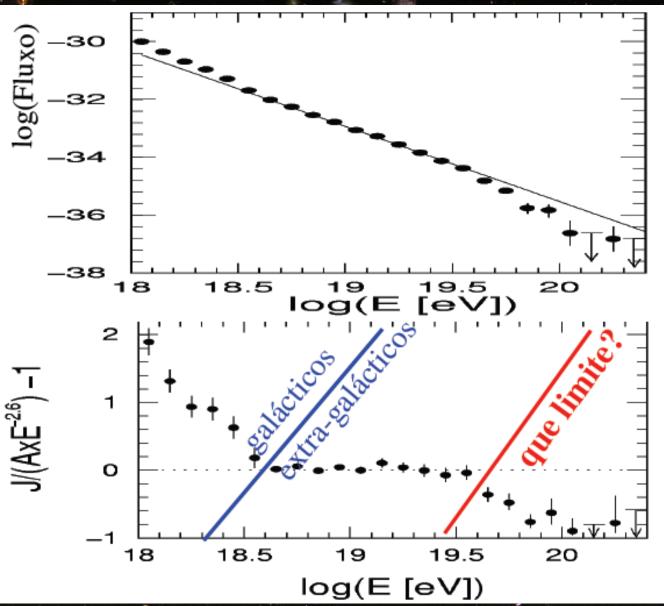
Click to edit Master title style

Observatório Pierre Auger


1 partícula/km²/século == 30 por ano




Um chuveiro de partículas no Observatório Pierre Auger



17 de fevereiro 2024

O Espectro de Energia

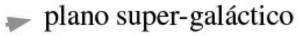
Medida do fluxo, por dois métodos independentes com muito mais precisão (só um ano de dados!)

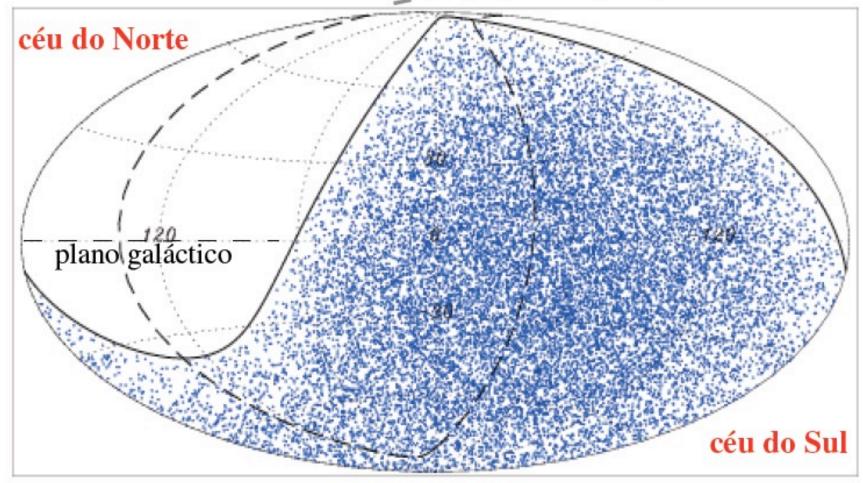
Há limite para a energia possível na galáxia!

E fora?

Propagação dos Raios Cósmicos no espaço

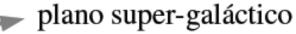
Raios cósmicos extra-galácticos

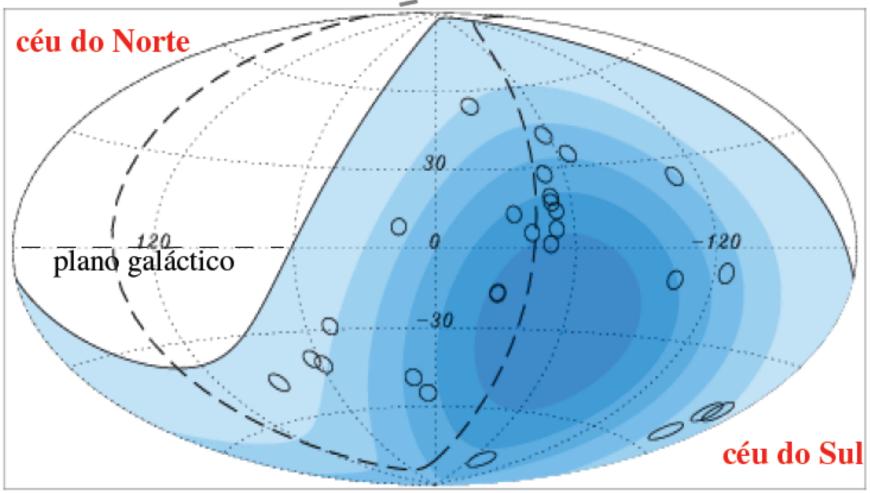



interagem com fotões da Radiação Cósmica

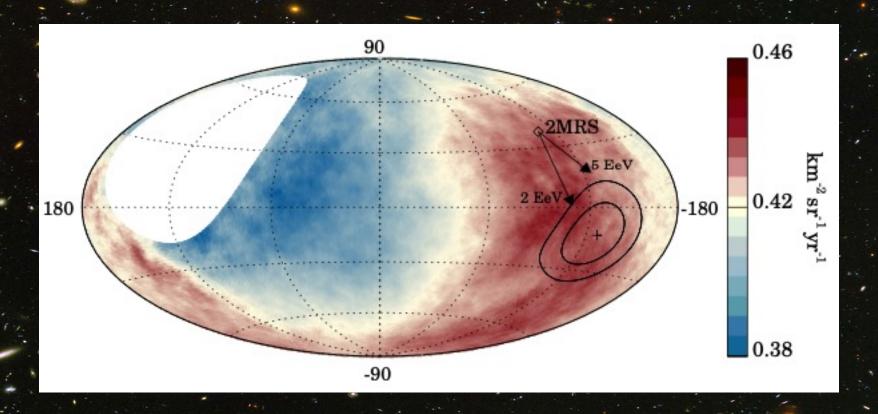
partículas de alta energia / partículas de baixa energia ou alta carga eléctrica são desviadas pelos campos magnéticos

O "Céu" segundo o Observatório Pierre Auger (E> 3 EeV)





O "Céu" de Alta Energia (E> 57 EeV)



Raios Cósmicos +energéticos têm origem EXTRA-Galáctica!

Anisotropia na distribuição da origem dos Raios Cósmicos de energias superiores a 32 EeV, indicam uma origem extra-galáctica destes raios cósmicos

Obrigado pela v/ atenção

Albert Einstein [P.N.1921]: (Com o conhecimento...)
"podemos olhar para o Universo como se não existissem milagres.
Mas também podemos olhar para o Universo como se tudo fosse um milagre!"