Update on the u_{μ} Systematics

Guilherme Soares

gmachado@cern.ch

29th May

1/10

29th May

2/10

Index

- 1 ν_{μ} Error Estimation
- 2 Activity Cuts
 - US QDC
 - Scifi Activity
- 3 Final Remarks

3/10

Estimating Systematic ν_{μ} Errors

 ν_{μ} event selection goes through the following cuts :

- Fiducial Volume
 - Scifi: Vertical [+200;-336]; Horizontal [+300;-200] (+4.8%)
 - DS: Horizontal Bars 70-105 and Vertical 10-50 (+8.3%)
- Track requires intercepting the first Scifi plane
- Sum of DOCA between track and hits < 3 cm
- > 35 Scifi Hits
- QDC for Upstream Muon System > 600
- Maximum of 10 hits in the Downstream Muon System

Used partition 0 through 50 from /eos/experiment/sndlhc/MonteCarlo/Neutrinos/Genie/sndlhc 13TeV down volTarget 20fb-1 SNDG18 02a 01 000/, with a total of 40272 ν events

Activity Cuts

4/10

Plan and Common Event Selection

Use 2023 Testbeam data to select events with showers that fulfill each other criteria:

- To analyze the US QDC select events with > 35 Scifi Hits
- To analyze the minimum Scifi hits select events with US QDC > 600 a.u.

Produce distribution plots and find reasonable criteria to vary

MC data comes from 2 \times 10 5 MC π^{-} events with 180 GeV/c 2 Applied event filter :

- Only consider Scifi hits within 26 ns of event start
- At least 10 Scifi hits
- At least 1 hit per station on X and Y projection each up to 3rd plane

For events that pass the initial filter:

- Scifi hits around for [-0.5;+1.2] clk cycles around t_{ref} for each plane and orientation
- Only consider US hits when $t_{hit} < t_{ref1H} + 3$ clk cycle Doing it individually for each SiPM instead of for the average timestamp of the hit for simplicity purposes, and not removing small SiPM responses ($QDC_S = QDC_I$) which may lead to a factor of 4/3 between MC and Testbeam data

Additional Testbeam data cuts:

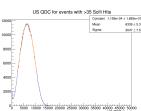
■ No event during previous 150ns

US QDC Requirement

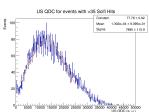
US QDC distributions have similar shapes

Find a scale factor based on reference points

Apply scale factor on MC QDC response and check ν_{μ} selection efficiency influence

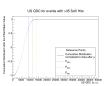

Perform a Gaussian fit to peak of the distribution

Refine fit to a range of $\mu \pm 1.5\sigma$ to isolate maximum of the distribution


Get cumulative distribution for QDC > μ and define 3 more points

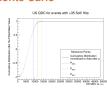
Perform linear regression to get the Scale Factor

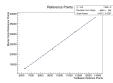
2023 Testbeam


Monte Carlo

5/10

Cumulative Distributions and Reference Points

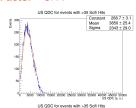

2023 Testbeam

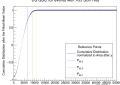



[Sample	Max	66.3 %	95.5 %	99.7 %
	Testbeam	6339	9250	11650	13750
Ī	Monte Carlo	13020	22450	31350	38250

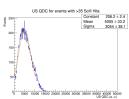
Reference Point Regressions

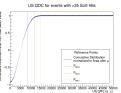
Monte Carlo


Scale Factor


$$= (3.44 \pm 0.03)^{-1}$$

Scale Factor $= (2.646 \pm 0.007)^{-1}$

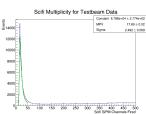

Cut Set Baseline		Surviving Events	Selection Efficiency (%)	Relative Baseline Error (%)	
		1251	3.11	-	
Scale Factor	3.44	931	2.31	-25.7	
Could I dolor	264	999	2 / 12	-20 3	


Scale Factor = 3.44^{-1}

Scale Factor = 2.64^{-1}

Sam	Max	66.3 %	95.5 %	99.7 %	
Testbeam		6339	9250	11650	13750
	Baseline	13020	22450	31350	38250
Monte Carlo	SF = 3.44	3850	6550	9150	11150
	SF - 2 64	5005	8550	11850	14450

Scifi Multiplicity


Scifi Hit multiplicity distributions has an early peak that is removed by the >35 hits criterion

Fit peak with a Landau Distribution


Retrieve variation from difference in σ or a combination of MPV and σ

Sample	MPV	σ	
Testbeam	17.69 ± 0.02	2.49 ± 0.01	
Monte Carlo	14.85 ± 0.07	1.54 ± 0.05	
Δ	3.74 ± 0.07	0.95 ± 0.05	

2023 Testbeam

Monte Carlo

Scifi Activity Systematic Errors

Minimum Scif	i	Surviving	Selection	Relative
Hits Required		Events	Efficiency (%)	Baseline Error (%)
Baseline	35	1251	3.11	-
$\pm \Delta_{\sigma}$	34	1261	3.13	+0.6
$\perp \Delta_{\sigma}$	36	1243	3.09	-0.6
$\pm (\Delta_{\sigma} + \Delta_{MPV})$	30	1284	3.19	+2.6
$\pm (\Delta_{\sigma} + \Delta_{MPV})$	40	1218	3.02	-2.9

10 / 10

Ollow Op

- Scifi Hit filter was updated to work properly with Monte Carlo
- Need to check filter influence in the selection efficiency of the Monte Carlo samples
- Currently redoing the Scifi Fiducial volume systematic error analysis with updated 2023 Testbeam geometry
- DS Fiducial volume error estimation will be aprimorated using a sample of TI18 muon events with Scifi tracks that generate showers and can be extrapolated to the DS system
- Sum of DOCA will also use shower generating muons, but with DS tracks that can be extrapolated to the Scifi
- Will check shower influence on the DS through Testbeam events that produce showers on the 3rd wall. Although no DS track can be reconstructed, the number of hits on the 1st DS plane should be a good proxy for how much the hit variation should be
- Scifi Activity Systematic Uncertainties are +2.6%
- US QDC selection looks like the biggest contribution to Systematic Uncertainties