
Basic elements of C++

Following the book:
D.S. Malik , C++ Programming: From Problem Analysis to Program Design
Useful documentation: http://www.cplusplus.com/

Original slides by P. Conde Muíño (2017)

Adapted by F. Neves (2025)

 2

C++ Programming

Contents

Data types

Operators

Flow control

User defined functions

Arrays

Classes

Pointers

Standard library

Reading/writing files

 3

Data types

Data type: set of values together with a set of operations

Three categories of simple data
➢ Integer number, real number, enumeration...

Integer
data types

(c++11) auto type: deduced from initialization.

Structured ➢

➢ structure, class

C++ Programming

 4

Data types

bool type: used to manipulate logical (Boolean) expressions
➢ Two possible values: true, false
➢ True, false: reserved words

char type: used for characters (smallest type)

C++ Programming

 5

Data types

float type: Represent real numbers
➢ Range: from -3.4E+38 to +3.4E+38 (four bytes)
➢ Maximum number of significant digits: 6 or 7

double type: floating point of double precision
➢ Range: -1.7E+308 to 1.7E+308 (eight bytes)
➢ Maximum number of significant digits: 15
➢

C++ Programming

 6

Templates (brief reference...)

A template is a blueprint that allows function or classes to work with any data type
➢

➢

Why use templates:
➢ Avoid code duplication.
➢ Write generic and reusable code.
➢

C++ Programming

Work with any (allowed) type (int, double, costum classes, ...)

 7

Type conversions & cast

Implicit type conversion:
➢ When changing from smaller to larger types

Explicit type conversion:

A = static_cast<dataTypeName>(expression)

A = dynamic_cast<dataTypeName>(expression) – expression is a pointer or reference

A = (dataTypeName)expression → try to avoid!

C++ Programming

 8

Operators

All operations inside of () are evaluated first
 *, /, and % are at the same level of precedence and are evaluated next
+ and – have the same level of precedence and are evaluated last
When operators are on the same level
- Performed from left to right (associativity)

Operators
➢ Binary or unary
➢ Act on an expression to give another expression

C++ Programming

 9

Relational, logical, increment operators

Relational operators

Increment/decrement operators
➢ ++variable, variable++
➢ --variable, variable--

➢

Logical operators

➢ Examples
➢ Assume x=6, y=2:

➢

C++ Programming

 10

Ternary operator ?:

Example:

Equivalent to:

C++ Programming

 11

Expressions

Statement: unit of code that does something – a basic building block of a program.

Expression: a statement that has a value
➢ If all operands are integer: integer expressions
➢ If all operands are float: floating point expression
➢ If mixed:

➢ Integer is changed to floating-point
➢ Operator is evaluated
➢ Result is floating-point

Example of
implicit type
conversion

C++ Programming

{ } defines a scope that encloses a block/group of statements.

 12

Variables and constants declaration

Named constant: memory location whose content can’t change during execution

Examples
➢

Variable: memory location whose content may change during execution

All variables must be initialized before
using them, but not necessarily during declaration

C++ Programming

 13

Input/Output statements

Output: cout
➢ Ex.: cout << " The factorial of 5 is " << Factorial(5) << endl;

The stream insertion operator is <<

 The expression is evaluated and its value is printed at the
current cursor position on the screen

Input: cin
➢ cin >> x;

Include file:

Ex.:

C++ Programming

 14

Input/Output statements

Modifiers to change the
format of the output

➢

➢

C++ Programming

 15

Examples (I)

Output results to std::cout

C++ Programming

 16

Examples (II)

● Input parameters from std:.cint
● Output results to std::cout

C++ Programming

 17

Pre-processor directives

C++ has a small number of operations
Many functions and symbols needed to run, e.g., an analysis tasks
C++ program are provided as collection of libraries
➢ Every library has a name and is referred to by a header file

Preprocessor directives are commands supplied to the preprocessor

All preprocessor commands begin with #
No semicolon at the end of these commands!
Syntax to include header files:

C++ Programming

 18

Namespace

Normal syntax
➢ std::cout << " The factorial of 5 is " << Factorial(5) << std::endl;

std:: indicates that these commands belong to the standard library

➢ Will become more clear in next classes

To avoid writing all the time std::
➢ using namespace std;
➢

C++ Programming

 19

Exercise

Write a program that takes as input a given length expressed in feet and inches

➢

Convert and output the length in centimeters

Help:
➢ Inch = 2.54 cm
➢ 1 foot = 12 inches

(use example on slide 15 as a guide)

C++ Programming

 20

Flow Control

C++ Programming

 21

Control structures

C++ Programming

A computer can proceed:
➢ In sequence
➢ Selectively (branch) – making a choice
➢ Repetitively (iteratively) – looping

Some statements are executed only if certain conditions are met

➢
A condition is met if it evaluates to true

 22

Control structures

C++ Programming

 23

If () {} else if () {} else {}

C++ Programming

One-Way Selection:
➢

➢ The statement is executed if the value of expression is true
➢ If expression is false, the statement is not executed and the program continues

 24

If () {} else if () {} else {}

C++ Programming

Two-Way Selection:
➢

➢

➢ If expression is true, statement1 is executed; otherwise,
statement2 is executed

 25

If () {} else if () {} else {}

C++ Programming

Multiple options
➢

If expression1 is true, statement1 is executed; otherwise,

statement is executed
If expression2 is true, statement2 is executed; otherwise,

 26

Switch () {}

C++ Programming

Alternative to a series of if... else

The expression is evaluated: depending on
Its value different statements will be
executed

More than one statement may follow

Break may/may not appear
➢ If it does not appear the following

statements will be executed!

 27

Switch () {}

C++ Programming

Flow diagram Example:

 28

While () {}

C++ Programming

While the expression is true,
execute the statement
Can become an infinite loop
➢ Ensure that expression
➢ becomes false at certain point

Update the control variable

 29

Do {} while ()

C++ Programming

Execute the statement until expression is true
➢Ensure that expression becomes false to avoid infinite loop

Test i before using it. Use i before testing it

 30

For (;;) {}

C++ Programming

designed to allow a counter variable that is initialized at the
beginning of the loop and incremented (or decremented) on each
iteration of the loop.

(C++11) for (var: containner)

 31

For (:) {}

C++ Programming

(c++11) this syntax works with containers that support .begin() and .end(), eg, vectors.
use references: for (int &x : nums) to modify elements

#include <iostream>
#include <vector>
using namespace std;

int main(){

vector<int> v;
…
for (auto i: v)

cout « i « endl;
return 0;

}

More on classes and containners ahead!

 32

For versus while

C++ Programming

 33

Break and continue

C++ Programming

They alter the flow of control

break statement is used for two purposes:
➢ To exit early from a loop (eliminating the use of certain flag variables)

➢
To skip the remainder of the switch structure

After break , the program continues with the first statement after the structure

continue:
➢ skips remaining statements and proceeds with the next iteration of the loop

 34

Exercise

C++ Programming

Program to find the first n prime numbers

Notice:
➢ Indentation: used for easy readability of the code
➢ Comments: are used to help the reader
➢ Variables declared within a loop or an if exist only inside!
➢

 35

User defined functions

C++ Programming

 36

Functions

C++ Programming

Building blocks
➢ Allow complicated programs to be divided into manageable pieces

 Some advantages of functions:
➢ A programmer can focus on just that part of the program

and construct it, debug it, and perfect it
➢ Different people can work on different functions

simultaneously
➢ Can be re-used (even in different programs)
➢ Enhance program readability

Examples: pre-defined mathematical functions

#include <cmath>

 37

Examples: maths functions

C++ Programming

 38

Functions

C++ Programming

Example on how to use them:

➢

➢

➢

➢

➢
Creating your own functions:

Call to your function:

function return type

 39

functions: return

C++ Programming

The function returns a value via the return statement
➢ It passes this value outside the function via the return statement

➢
The function immediately terminates after the return statement

 40

Examples (I)

C++ Programming

Prototype here (usually in a .h file);
implementation may be in the same or
a different file (usually in a .cpp file).

 41

Void function

C++ Programming

Does not have a return type

No return statement!

 42

Program flow

C++ Programming

Execution begins at the first statement in the function main

Other functions executed only when called

A function call results in transfer of control to the first
statement in the body of the called function

After the last statement of a function, control passed back to the
point immediately following the function call

After executing the function the returned value replaces the
function call statement

 43

Function overloading

C++ Programming

In a C++ program, several functions can have the same name
➢ Function overloading or overloading a function name

Two functions are said to have different formal parameter lists if both functions have:
➢ A different number of formal parameters, or
➢ The data type of the formal parameters, in the order you list

them, must differ in at least one position

The signature of a function consists of the function name and its formal parameter list:

➢

Does not include the return type!

 44

C++ Programming

Arrays

 45

Arrays

C++ Programming

Store multiple values together as an unit:

Can have multiple dimensions:

Abstraction: elements in memory
are in a simple array!

 46

Example

C++ Programming

arrays use 0-based indexing

 47

C++ Programming

User defined data structures: classes

 48

Object oriented programming

C++ Programming

In procedural programming paradigm programs are made of
functions that are frequently not re-usable
➢ Likely to reference headers, global variables, …
➢ Not suitable for high level of abstraction

 49

Object oriented programming

C++ Programming

 Ease software design

Dealing with high-level concepts and abstractions

Ease software maintenance:
➢ object-oriented software are easier to understand,

therefore easier to test, debug, and maintain.

 Reusable software
➢ Use already tested and debugged code

 50

Example football game

C++ Programming

Player (another class):
➢ has attributes (can be also other classes):

➢ Name, number, location in the field, …

➢ Actions: run, kick the ball, stop, …
Some of this objects, like player, could be
re-used for a basketball game!

class football_game {

};

 51

Class definition

C++ Programming

Classname: identifies the class.

Data Members or Variables (or
attributes, states, fields): contains the
attributes of the class.

Member Functions (or methods,
behaviors, operations): contains the
dynamic operations of the class.

Classes can then be
used as your own data type!

 52

Class instantiation

C++ Programming

Call constructor directly:

➢

Access members:

 53

Constructor

C++ Programming

Function with the same name as the class

Used to construct and initialize all the members of the class

To create an instance of a class you need to call the constructor
➢ Can only be called once per instance!

Has no return type:

Alternative syntax:

Default
argument!

 54

Private, public, getters and setters

C++ Programming

Private versus public members
➢ Private members are only accessible inside the class
➢ Public members can be accessed:

➢

➢

Can use getters and setters:

Only for public
members!

 55

this and assigment operator

C++ Programming

➢

➢

Assignment operator (=):

Provided by the compiler

Assign one object to another of the same class via member-wise copy

Keyword this :

 56

Destructor

C++ Programming

Special function that has the same name as the classname
➢ called implicitly when an object is destroyed
➢ It will be very important when using pointers! (next class)

 57

C++ Programming

Inheritance

 58

Inheritance

C++ Programming

Example

 59

C++ Programming

Standard Library

 60

The Standard Library

C++ Programming

Collection of classes and functions, which are written in the core
language and part of the C++ ISO Standard itself
➢ Complex data types: classes
➢ Need always an include file

Examples:
➢ Standard input/output (cin, cout)
➢ Write/read files
➢ Containners:

strings: sequences of characters
vectors: sequence of elements (int, double…)
maps: sequence of (key,value)

...

➢

➢

support iterators,
element access,
dynamic resizing, etc

 61

std::string

C++ Programming

Programmed defined type used to handle strings of characters
➢ File to be included:
➢ Examples of usage:
➢

➢

➢

➢

➢

➢ Replace one character:
➢

➢
It works as an array!

 62

std::string functions (I)

C++ Programming

 63

std::string functions (II)

C++ Programming

 64

std::string functions (III)

C++ Programming

 65

C++ Programming

Pointers and references

 66

Why do we need pointers?

C++ Programming

allow you to allocate memory at runtime:
➢ essential when the amount of memory needed isn’t known at compile time

Efficient Parameter Passing:
➢ Passing large data structures (like arrays or objects) by pointer (or reference)

avoids costly copying.
➢

allows modifying the original value from inside a function
➢

Building Dynamic Data Structures:
➢ Pointers are essential for creating linked lists, trees, graphs, etc.

Function Pointers:
➢ store the address of a function in a pointer, and call it dynamically (e,g callback)

 67

Pointers (I)

C++ Programming

A pointer is a variable that stores/manipulates addresses in memory

➢
It's possible values are the memory allocations

Declaring a pointer:
➢

➢

➢ Be careful:
➢ only the first one is a pointer
➢ both are pointers
➢ p, q: can store the memory address of any

Address operator &

Examples

 68

Pointers (II)

C++ Programming

Dereference operator *:

Example:

Accesses the value stored in
the memory pointed to by p

 69

*p, &p and p

C++ Programming

 70

Pointers to classes (I)

C++ Programming

You can also declare pointers to classes

Attention! The access operator . has preference

➢

Use () before the access operator .

*myTime.hour = 10; if hour were a pointer, would access its content

Clock myTime, *pTime;

pTime=&myTime;

(*pTime).hour = 10;

cout « myType.hour «endl;

 71

Pointers to classes (II)

C++ Programming

Dereference the pointer and access member directly: operator ->

Clock myTime, *pTime;

pTime=&myTime;

pTime->hour = 10;

cout « myType.hour «endl;

 72

Example

C++ Programming

Output:
➢x = 5

 73

Initialization of pointer variables

C++ Programming

Pointer variables must be initialized
➢ Point to nothing: nullptr

Pointers manipulate data in existing memory spaces
➢ Why are they useful?

Dynamic allocation of memory: the new operator

 74

Examples: operator new

C++ Programming

 75

operator delete (I)

C++ Programming

Memory was allocated twice
➢ The memory address 1500 can't be used any more but it

cannot be accessed either because there is no pointer to it

If repeated many times may consume all available memory!
➢ Memory leak!

int *p;
p = new int;
*p = 54; p = new int; *p = 73;

 76

operator delete (II)

C++ Programming

Use delete operator

int *p;

p = new int;
*p = 54;
delete p;

p = new int;
*p = 73
delete p;

No memory leak!

 77

Smart pointers

C++ Programming

std::unique_ptr<int> p = std::make_unique<int>();
*p = 54;

// reassign safely — old memory automatically deleted
p = std::make_unique<int>();
*p = 73;

Alternatively (C++11) use of std smart pointers to avoid leak memory

See also std::share_ptr, std::weak_ptr, etc available at <memory>

Template
argument

 78

Pointer operations

C++ Programming

➢ copy operator (copies memory addresses)
➢ logical operator (true if both point to the same
➢ memory address)
➢ Increment the memory address by one
➢ (i.e. points to the next memory space of
➢ size int, in this case)

 79

Arrays and pointers

C++ Programming

Dynamic array: ➢ Creates an array of size 10
➢ Stores the value 25 in the first element
➢ Advances to the next memory address (second element)

➢
Stores the value 25 in the second element

➢
Equivalent to

➢Static array:

➢ list: memory address of the first element
➢ list is a pointer but the memory

address it points to cannot be changed
during the program execution

 80

Example

C++ Programming

The function receives a
pointer to a string

It resets the string to a
certain value

In the main, we need to
pass the address of the
x variable to the
function Reset()

 81

Shallow versus deep copy (I)

C++ Programming

After a sequence of this type, both pointers are dangling
➢ If the program tries to access first, it will either crash or

produce and invalid result

 82

Shallow versus deep copy (II)

C++ Programming

Deleting the second pointer will not invalidate the first one

 83

Destructor

C++ Programming

Consider the following example:

When going out of scope, we need to free the memory allocated to p

➢ Notice: p should be properly initialized before destructing it!

Object of type ptrMemberVarType

 84

Overloading the copy operator

C++ Programming

If objectOne dealocates the memory of pointer ObjectTwo.p becomes invalid

Overloading:
C++ allows you
to extend the
copy operator

 85

Example

C++ Programming

Avoids shallow copy of the pointers

Passes argument by reference: the
function receives a reference to the original
variable, not a copy. Internally, this
behaves like passing the variable's address
(a pointer), allowing the function to
modify the caller’s value directly.

 86

Example

C++ Programming

Reading/Writing files

 87

Input/output

C++ Programming

I/O is the process of sending and receiving data
I/O may be done to:
➢ Persistent devices (such as file systems)
➢ Volatile/ephemeral devices (screen, keyboard)
➢ Persistent non-computer devices (printers)

Programming languages provide interfaces to performing I/O
and accessing persistent devices
➢ C++ has the iostream library

They also provide abstractions for doing so
➢ Stream abstraction
➢ File abstraction
➢ C’s stdio library

 88

Streams

C++ Programming

Streams are made of basic types
➢ Characters (bytes) in C++

Every class for reading from input devices derives from: istream
Every class for writing to output devices derives from: ostream
➢ Functions that return ostream/istream references can

write/read from any arbitrary device
➢ Flexibility and reusability of interfaces

➢

// In the same way could send output for a file

 89

iostream

C++ Programming

ios is a base class that
➢ Manages error and format state of a stream
➢ Communicates with a device’s buffer

streambuf is a helper class that
➢ Buffers data

istream and ostream are specializations of ios that define input
and output specific
operations
➢ Example: <<and>>

 90

streambuf

C++ Programming

Associated to ostream/istream
Memory block that acts as an intermediary between the stream
and the physical file
➢ Characters not flushed directly to file
➢ Kept on buffer till data is written to the physical

medium/freed
➢ Synchronization

Synchronization takes place when:
➢ File is closed
➢ The buffer is full
➢ Explicitly, with manipulators (example: flush, endl).
➢ Explicitly, with member function sync()

 91

Formatting

C++ Programming

Formatting
➢ Send the input into the stream abstraction
➢ Convert arbitrary types to character streams

Extended by class definitions of operator<< and operator>>
➢ Which use the existing
➢ formatting for built in
➢ Types
➢

➢ Easily extensible interface:

 92

File streams (1)

C++ Programming

Stream to read/write to a file
➢ Data will be persistent

File classes
➢ Output class ofstream inherits from ostream
➢ Input class ifstream inherits from istream
➢ Input/output class fstream used to read/write to the same

file
Thus, standard stream interfaces
can be used to read/write files
Name of the file specified
in the constructor

 93

File streams (II)

C++ Programming

File stream classes are a example of multiple inheritance

 94

File abstraction

C++ Programming

A file is a stream
➢ by definition as it inherits the properties

A file contains persistent data
➢ Write creates new data (or overwrites existing data)
➢ Read returns existing data (without damaging the data)
➢ Differs from other stream types which are destructive

A file uses “pointers” to implement the stream abstraction
➢ Get “pointer” for the next data to be read
➢ Put “pointer” for the next data to be written

Reading/writing
advances the
 pointers

 95

File attributes (I)

C++ Programming

Properties of the file can be specified:
➢ In the constructor
➢ Using the open() function with a default constructor

Properties dictate:
➢ legal operations (read, write, append)
➢ disposition of the file pointer (start, end)
➢ naming/creation options
➢ mode (binary or text)

 96

File attributes (II)

C++ Programming

Properties of the file can be specified:
➢ In the constructor
➢ Using the open() function with a default constructor

Attributes:

 97

Example

C++ Programming

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97

