E["?'i' LABORATORIO DE INSTRUMENTACAO
‘-__\-E__A! E FISICA EXRERIMENTAL DERARTICULAS
L=l P '’ 2

[ROOT Intermediate Tutorial]

Tutorial
instructions

= All the instructions needed to complete this tutorial can be
found in the indico page file:
ROOT_Intermediate_Tutorial_2025.pdf

= Once inside the LIP machines, access the input file in folder
/Istore/auger/afernandes/ROOT_TUTORIAL/ and name
zjet_unrec.root. Alternatively, download the input file with this
command:

wget ‘https://indico.lip.pt/event/1226/contributions/4222/attachments/3500/5443/zjet unrec.root’

https://indico.lip.pt/event/1226/contributions/4222/attachments/3500/5443/zjet_unrec.root

| Input file

= The file contains simulated events for the decay of the Z-boson

= In this exercise, we are interested in the decay:

Z->ptp”

Input file

= The final objective of this tutorial is for you to draw the invariant mass
spectrum of the resulting muon pairs

IM = \/E% — (P&, + Py, +PE)

Checking the input
file

= Once you have the file downloaded, you can see its contents using
the following commands:

e Is
* Tree->Print()
* Tree->Scan()

Intermediate
tutorial

= Create a new file (with whatever name you want) with a function

with the same name as the file (so that you can run it as a standard
ROOT macro)

= Declare the file object that we are going use to access our input file
= Declare the tree object as in previous tutorials

= Declare a histogram object, with the limits, number of bins, and
title you think best for the Z mass

Intermediate
tutorial

v void ROOT_Intermediate_partl(){

TFile “fInput TFile("zjet_unrec.root", "read");

TTree 't (TTree*) fInput->Get(“"Tdata");

TH1D("Zmass", "Z boson mass", 168, ©.,

150);

o

Intermediate
tutorial

= Declare the variables that we will use to access the particles of each
event, saved in the tree (as done in the first ROOT tutorial)

= Link these variables to the tree with the SetBranchAddress function

Intermediate
tutorial

vector<int

vector<double
vector<double
vector<double
vector<double
vector<double

t->SetBranchAddress("id", 2id);
t->SetBranchAddress("px", &px);
t->SetBranchAddress("py", &py);
t->SetBranchAddress("pz", &pz);
t->SetBranchAddress
t->SetBranchAddress(

Intermediate
tutorial

= Loop over the entries in tree with a for loop, for example (to get the
number of entries in the tree: t—>GetEntries() and to get the values
of entry i loaded on the linked variables make t—>GetEntry(i))

= Loop over the particles in each event

= When you find the muons (there should be exactly two per event),
calculate their invariant mass and fill a histogram with it

Intermediate
tutorial

IM = JE% — (p%y T 03 +1%)

int NEvents = t->GetEntries();
(int 1 =8@; 1 NEvents; i

t->GetEntry(1i);
int i mu_p = @, i_mu_n - 6;
int flag_mu_p - 0, flag_ mu_n - ©;
int iObj - ©; iObj (*id).size(); iobj
((*id)[iobj]==13){

imu_p = i0bj;
flag_mu_p++;

((*id)[iobj] 13){
i_mu_n = io0bj;
flag_mu_n++;

flag_mu_p flag_mu_n

double Et ("E)[i_mu_p] (“E)[i_mu_n];

double pxt (*px)[i_mu_p] ("px)[i_mu_n];
double pyt = (“py)[i_mu_p] + (“py)[i_mu_n];
double pzt (*pz)[i_mu_p] ("pz)[i_mu_n];

double invar_mass - sqrt(Et Et (pxt pxt

pyt ‘pyt

pzt pzt));

Intermediate
tutorial

= Verify that the spectrum makes sense and then save the events that
pass your selection in a new tree, in a new file. You can choose what
variables you want to save but as a starting point the four vector
(momentum plus energy) and the mass should be enough.

@m — a X
File Edit View Options Tools Help

Z hoson mass

=]
w

Zmass
Entries 663049
Mean 90.56
Std Dev 5.784

200

180

160

140

120

100

80

60

40

20

P = EEE ERT R R
0 20 40 60 80 100 120 140

Intermediate
tutorial

= To do this you should declare a file, more or less in the same place
where you had declared the input one and the same for the tree

= You must declare new output variables (i.e. px, etc.) and link them
to the new tree with the Branch function

= Every time an event passes you should fill the output variables with
the values you want to save and then use t—>Fill(), in order to save
them to your output tree

Intermediate
tutorial

TFile “fOutput TFile("zjet_filtered.root", "recreate");
TTree "tOutput TTree("Tdata_output", "Tdata_output");

double m_output

"1

double px_output
double py_output

E*-'
9.
eo

double pz_output
double E_output E_output = Et;
px_output pxt;
py_output Pyt;
pz_output pzt;
m_output invar_mass;
tOutput->Fill();

("

tOutput->Branch("px", &px_output)
tOutput->Branch("py", “py_output)
tOutput->Branch("pz", “pz_output)
tOutput->Branch("m", “m_output);

tOutput->Branch("En", ZE_output); tOutput->Write(

fOutput->Close()

Intermediate
tutorial

= Write a new ROOT macro that opens your data file.

= Draw the Z boson mass peak and fit it using a Gaussian function.
The fitted value of the Gaussian’s mean should approximately
correspond to the Z boson measured mass. How good is the
agreement?

Intermediate
tutorial

void ROOT_intermediate_part2(){

TFile fInput TFile("zjet_filtered.root", "read");

2

TTree t (TTree*)fInput->Get("Tdata_output”);

3

double invar_mass - ©.;
t->SetBranchAddress("m", Zinvar_mass);

TH1D “h TH1D("h™, "Z boson's mass spectrum; Invariant mass (GeV); Counts", 160,

int NEvents = t->GetEntries();
(int 1 = 9; i NEvents; 1
t->GetEntry(i);

h->Fill(invar_mass); TCanvas():-
\NJa

h->SetTitle("Gaussian fit");
h->Fit("gaus"™);

h->DrawClone();

Intermediate

tutorial

@ cl_n2

File Edit View Options Tools

Help

Gaussian fit

%)

x
s
o

h

200

Counts

180

160

140

120

100

80

60

40

20

=

Entries 663050
Mean 90.56
Std Dev 5.784

(=]
NI
(=]
I
(=]
[o}]
(=]

80 100

L L
120 140
Invariant mass (GeV)

Intermediate
tutorial

= In this case, because we are not taking into account detector
resolution effects, the Zboson mass peak should be better
described by a Breit-Wigner function. This function is not predefined
in ROOT, therefore you need to define it yourself. Once you have
defined your own TF1 function you can use it to fit the mass peak as
before. Does your estimation the Zboson mass gets closer to the
measured value? What about the goodness of fit, is it improved?

k
F(E) = 5
(B2 — M?)? + M2T?
k= 2v2MTy with = \/ME (M? +T?).

my/ M?% +

Intermediate
tutorial

Double_t fitFunc(Double_ t* x, Double_t* par)

{
Double_t argl 14.8/22.0;

Double_t arg2 = par[l]*par[l1]“par[2]*par[2];

Double_t arg3 ((x[e]*x[e] par[2]*par[2]))*((x[@]*x[©] par[2]*par[2]));
Double_t argd = x[@]*x[e]*x[e]*x[e]*((par[1]*par[1] par[2]fpar[2]));

P

par[@]argl arg2 (arg3 + argd4);

TCanvas(); k
h->SetTitle("Breit-Wigner fit"); f(E) —

TF1 “func (. 3,3); (EZ = M2)2 o M?212

_ (1 95 @) - 24/2MT'
func->SetParameter(1,95.0) foi— \/_ with y = \/Mz (M2 + FQ) _

h->Fit("'F1tFurjc"-; ﬂm

h->DrawClone();

Intermediate
tutorial

£5 1 n3 - a X
File Edit Wiew Options Tools Help
Breit-Wigner fit
" x10° h
£ 200— Entries 663050
3 = Mean 90.56
© 180— StdDev 5.784
160—
140—
120—
100—
80—
60—
40—
20— h
D : 1 1 1 | 1 1 1 | 1 Il Il | L Il 1 1 1 L Il | 1 1 1 | 1
0 20 40 60 80 100 120 140
Invariant mass (GeV)

