LIP Summer Internship 2025

Neutrinos: a short overview

Valentina Lozza FCT Fundação para a Ciência e a Tecnologia

25 June 2025, Lisbon

OVERVIEW

In this talk we will discuss two main topics

1. Neutrinos properties: status of the art

elementary-comic.com

OVERVIEW

In this talk we will discuss two main topics

2. Detecting neutrinos with large scale experiments: SNO+ & DUNE

https://www-he.scphys.kyoto-u.ac.jp/nucosmos/en/files/NF-pamph-EN.pdf

1. NEUTRINOS

THE SCALE OF THINGS

Dear Radioactive Ladies and Gentlemen,

As the bearer of these lines, to whom I graciously ask you to listen, will explain to you in more detail, how because of the "wrong" statistics of the N and Li⁶ nuclei and the continuous beta spectrum, I have hit upon a desperate remedy to save the "exchange theorem" of statistics and the law of conservation of energy. Namely, the possibility that there could exist in the nuclei electrically neutral particles, that I wish to call neutrons, which have

Enrico Fermi gives it the name of **neutrino** (from Italian, little neutral one) and includes in his beta decay theory (1934)

Valentina Lozza, LIP Lisboa

A TERRIBLE MISTAKE

EVERYTHING WENT WELL

• In 1952-1959 two experiments finally detected neutrinos!

Project Poltergeist

Herr Auge

Nobel prize Reines 1995

THE DETECTION

Valentina Lozza, LIP Lisboa

memecenter.com

UNTIL

WHERE NEUTRINOS COME FROM?

22 orders of magnitude!!!!

NEUTRINO BASICS

- ★ What we know about neutrinos:
 - 3 types (= *flavours*) of neutrinos exist = electron, muon, tau
 - According to the lepton they produce when they have weak CC interactions

NEUTRINO STATES

- ★ What we know about neutrinos:
 - No charge do not participate in electromagnetism
 - Weak interactions
 - They have a tiny but different from 0 mass
 - Mass eigenstates is different from the flavour eigenstates
 - Neutrino can change their flavour once they have been produced

NEUTRINO OSCILLATIONS

★ Neutrino can change their flavour once they have been produced =

Neutrino's oscillations

PARAMETRIZE THE OSCILLATIONS

★ Oscillations are parametrized by 3 masses (m_1, m_2, m_3) , 3 angles $(\theta_{12}, \theta_{13}, \theta_{23})$ and an extra complex phase $e^{i\delta}$ ➤ Responsible for the CP-violation part Flavour Mass eigenstate eigenstate $\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$ Solar + Accelerator and **SBL reactor** LBL reactor **Atmospheric**

Dedicated experiments search for the different sectors in neutrino oscillations

The probability of an electron neutrino to be detected in the same flavour depends on the **mass difference** squared and the **distance source-detector**

$$P(\mathbf{v}_e \rightarrow \mathbf{v}_e) = 1 - \sin^2(2\theta) \sin^2(\frac{\Delta m^2 L}{4E})$$

Simplified 2-neutrinos case

MEASURING OSCILLATIONS

Valentina Lozza, LIP Lisboa

MASS ORDERING

Valentina Lozza, LIP Lisboa

20

NEUTRINO MEMORY LN

AND NOW?

We know that neutrinos change flavour

Illustration: © Johan Jarnestad/The Royal Swedish Academy of Sciences

We still don't know their mass

Artwork by Sandbox Studio, Chicago with Corinne Mucha

What is the origin of the neutrino mass?

Dirac Valentina Lozza, LIP Lisboa

Majorana

Majorana and Dirac proposed two different answers to the question of whether neutrinos and antimatter neutrinos are different particles or a single particle masquerading as two. As of today the topic remains an open question.

2. Detecting neutrinos with large scale experiments:

Valentina Lozza, LIP Lisboa

- ★ Neutrinos have a very small interaction probability:
 - The probability for a neutrino to interact in the Sun is extremely small: 10-41 cm²
 - You need more than 10¹⁶ neutrinos/s emitted to observe 1 neutrino/s in 1 m³ of water
 - Important: We don't observe neutrinos directly (weak interaction and no charge), we
 observe the product of their reactions!!!!!!

$$\nu_e + e^- \rightarrow \nu_e + e^-$$

- \star So how do we study neutrinos?
 - We need large detectors

- ★ Neutrinos have a very small interaction probability:
 - The probability for a neutrino to interact in the Sun is extremely small: 10-41 cm²
 - You need more than 10¹⁶ neutrinos/s emitted to observe 1 neutrino/s in 1 m³ of water
 - Important: We don't observe neutrinos directly (weak interaction and no charge), we
 observe the product of their reactions!!!!!!
- \star So how do we study neutrinos?
 - We need large detectors
 - And large neutrinos fluxes

$$\nu_e + e^- \rightarrow \nu_e + e^-$$

- ★ Neutrinos have a very small interaction probability:
 - The probability for a neutrino to interact in the Sun is extremely small: 10-41 cm²
 - You need more than 10¹⁶ neutrinos/s emitted to observe 1 neutrino/s in 1 m³ of water
 - Important: We don't observe neutrinos directly (weak interaction and no charge), we
 observe the product of their reactions!!!!!!

$$\nu_e + e^- \rightarrow \nu_e + e^-$$

- \star So how do we study neutrinos?
 - We need large detectors
 - And large neutrinos fluxes
 - A loooooot of time

- ★ Neutrinos have a very small interaction probability:
 - The probability for a neutrino to interact in the Sun is extremely small: 10-41 cm²
 - You need more than 10¹⁶ neutrinos/s emitted to observe 1 neutrino/s in 1 m³ of water
 - Important: We don't observe neutrinos directly (weak interaction and no charge), we
 observe the product of their reactions!!!!!!

$$\nu_e + e^- \rightarrow \nu_e + e^-$$

- \star So how do we study neutrinos?
 - We need large detectors
 - And large neutrinos fluxes
 - A loooooot of time
 - Reduce as much as possible other sources of contamination (cosmic radiation for example)

2. Detecting neutrinos with large scale experiments: SNO+

THE NATURE OF NEUTRINOS

An understanding of the nature of neutrino mass is connected to the charge conjugation nature – Dirac or Majorana – of neutrinos. An observation of $0\nu\beta\beta$ would answer the following questions:

Are neutrinos their own antiparticles?

Is lepton number is violated?

What is the absolute value of the mass of neutrinos?

Why the Universe contains more matter than antimatter?

Results will have a profound impact across research areas

Neutrino physics

Standard Model of particle physics

Valentina Lozza, LIP Lisboa

Cosmology

- ★ A radioactive decay is a way the nucleus becomes more stable by loosing one or more particles. We have seen that in nature there exist 3 main decay modes: alpha, beta, and gamma
 - Sometimes a nucleus is unstable but cannot decay by a simple beta decay
 - A double-beta decay happens

- ★ A radioactive decay is a way the nucleus becomes more stable by loosing one or more particles. We have seen that in nature there exist 3 main decay modes: alpha, beta, and gamma
 - Sometimes a nucleus is unstable but cannot decay by a simple beta decay
 - A double-beta decay happens

- ★ A radioactive decay is a way the nucleus becomes more stable by loosing one or more particles. We have seen that in nature there exist 3 main decay modes: alpha, beta, and gamma
 - Sometimes a nucleus is unstable but cannot decay by a simple beta decay
 - A double-beta decay happens

Only ~35 isotopes do this!!!!! Decay scale is 10²⁰ yrs

- ★ A radioactive decay is a way the nucleus becomes more stable by loosing one or more particles. We have seen that in nature there exist 3 main decay modes: alpha, beta, and gamma
 - Sometimes a nucleus is unstable but cannot decay by a simple beta decay
 - A double-beta decay happens

Only ~35 isotopes do this!!!!! Decay scale is 10²⁰ yrs

 \star But we want to go further:

Involves "internal" neutrino annihilation Only possible for Majorana neutrinos

THE OVBB DECAY: EXPERIMENT

THE OVBB DECAY: TECHNIQUES

- 1. Liquid scintillator detectors (Xe/Te):
 - I. Good resolution
 - II. High mass
 - III. Low background
 - IV. Event's ID discrimination
- 2. Bolometers/semiconductors:
 - I. Great resolution but relative low size.
 - II. Requires cooling at cryogenic temperatures
- 3. Tracking or topology detectors:
 - I. Gas/Liquid TPC.
 - II. Good topology reconstruction.
 - III. Low mass

THE OVBB DECAY: TECHNIQUES

1. Liquid scintillator detectors (Xe/Te):

KL-Zen =BEST RESULT FOR 0ν BB T_{1/2} 3.8x10²⁶ yrs (combined 400-800)

- 2. Bolometers/semiconductors:
 - I. Great resolution but relative low size.
 - II. Requires cooling at cryogenic temperatures
- 3. Tracking or topology detectors:
 - I. Gas/Liquid TPC.
 - II. Good topology reconstruction.
 - III. Low mass

LIP Coimbra LIP Lisboa

SNOLAB TRIUMF University of Alberta Queen's University Laurentian University

UNAM

Are neutrinos Majorana particles?

University of Chicago Boston University BNL University of California Berkeley LBNL University of Pennsylvania UC Davis

Oxford University Kings College University of Liverpool University of Sussex University of Lancaster

Shandong University

SNO+ DETECTOR

CONSTRUCTION

SNO+ LOCATION

PHYSICS

 \star A very large detector that searches for the nature of neutrinos

DOUBLE-BETA DECAY WITH SNO+ SNO

★ Add a large mass of the isotope of interest and then count

CP - VIOLATION

★ If neutrino's interactions DO NOT conserve CP, neutrino and antineutrinos oscillations are different!

2. Detecting neutrinos with large scale experiments: DUNE

PHYSICS

★ <u>Neutrino Oscillation Physics</u>

- High sensitivity for leptonic CP violation
- Identify the neutrino mass hierarchy
- Precision oscillation physics

★ **Proton Decay**

• Target SUSY-favored mode $p \longrightarrow K+v \star$

- ★ <u>SN burst physics and astrophysics</u>
 - Galactic core collapse supernova
 - unique sensitivity to ve
- ★ <u>Atmospheric Neutrinos</u>
- ★ Solar neutrinos (similar approach as SN)
- <u>Neutrino Interaction Physics (Near Detector)</u>

DUNE FAR DETECTOR: LAR TPCS

★ <u>Technology advantages:</u>

- 3D imaging (use image processing technology for event classification)
- Full event topology

★ <u>Major Challenges:</u>

- Event reconstruction (monolithic detector)
- Strong activity in ML algorithms
 - Scaling of technology
- Understanding the detector

A NEUTRINO EVENT

LONG BASELINE OSCILLATIONS

Measure a neutrino beam at long distance...

★ Measure neutrino spectra at 1300 km in a wide band beam

- Near detector at Fermilab: measurement of v_{μ} unoscillated beam
- $\bullet~$ Far detector at SURF: measure oscillated v_{μ} and $v_{\rm e}$

LONG BASELINE OSCILLATIONS

...and then repeat for antineutrinos

★ Measure antineutrino spectra at 1300 km in a wide band beam

- Compare oscillations of neutrinos and antineutrinos
- Direct probe of CP violation in the neutrino sector

Valentina Lozza, LIP Lisboa

800

700

600

500

400

300

200

100F

350

300

250

200

150

100 - I

50₽

0

 $\Delta \mathbf{n}$

2

3

4

Events per 0.25 GeV

 Δm^2

1

0

3

Δ

2

Events per 0.25 GeV

 v_{μ} disappearance

3.5 yrs running

anti-v_µ disappearance

3.5 yrs running

⊽µČC NC

(v_e + ⊽_e) CC (v_τ + ⊽_t) CC

DUNE $\overline{\nu}_{\mu}$ Disappearance

 $\Delta m_{32}^2 = 2.451 \times 10^{-3} \text{ eV}^2$

(v_e + ⊽_e) CC

(v_t + v_t) CC

3.5 years (staged)

— Signal ⊽_u CC

v_µ CC

ŃC

Reconstructed Energy (GeV)

6

8

5

6

Reconstructed Energy (GeV)

 $sin^{2}\theta_{23} = 0.580$

5

Reconstructed Energy (GeV)

Events per 0.25 GeV

SUMMARY

Neutrinos

- ★ They oscillate (and we know how)
- ★ They are massive (but we don't know how much)
- ★ Are neutrinos their own antiparticles?
- ★ What is the absolute mass scale?
- ★ What is the CP violation phase?
- ★ What is the mass hierarchy?
- ★ A whole zoo of experiments are trying to address these questions
- ★ A rich field of opportunities is in place

<u>Neutríno group @LIP</u> For thesís/general ínfo: <u>maneíra@líp.pt</u> <u>vlozza@líp.pt</u>

The presenter Valentina Lozza is funded by FCT

BACK UP SLIDES

PARAMETRIZE THE OSCILLATIONS: 2V CASE

★ Oscillations are parametrized by 2 masses (m_1 , m_2), 1 angle (θ)

The flavour composition changes with time, because the mass states have slightly different velocities

The probability of an electron neutrino to be detected in the same flavour depends on the mass difference and the distance source-detector

$$P(\mathbf{v}_e \rightarrow \mathbf{v}_e) = 1 - \sin^2(2\theta) \sin^2\left(\frac{\Delta m^2 L}{4E}\right)$$

CAN WE MEASURE THE MASS DIRECTLY

- ★ Yes, but it is not easy!
 - Measure their track curvature in a magnetic field doesn't work
 - neutrinos are neutral, not affected by EM fields
 - Measure energy and momentum of daughter particles ?
 - Neutrinos are the lightest particles, **don't decay in others**
 - Use quantum interference to probe neutrino mass \checkmark

WHERE WE OPERATE

