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What is Machine Learning?

Ability of a machine to imitate

intelligent human behaviour

Artificial
Intelligence

Machine

Learning Application of Al that allows a system

to learn automatically to perform tasks

Neural Nets

Deep
Learning

Machine Learning based on
Artificial Neural Networks



‘ What is Machine Learning?

Traditional Computation

The task is programmed by the user as a
pre-defined set of rules/algorithms to
apply to data

@
4\(\&(,7

S

Answers

From M. C. Romao LIP seminar

Machine Learning (ML)

The program learns from data what are the
necessary rules to execute a task/objective
defined by the user: Training

ll-\nswers

Q
ﬁ Training
JII‘RuIes

=l—> u —> Answers



https://indico.lip.pt/event/739/

‘ What is Machine Learning?

Process of solving a practical problem by:
1. Gathering a dataset {(x,y,)}Y,

X; - "feature vector”: properties of the example i
x/ - individual feature

y; - “label”: element of a class set or real number

2. Algorithmically building a statistical
model based on that dataset

Example: Linear Regression!

—— linear regression (fit)

e training examples

|
|
|
|
|
|

-10

-10 -5 0 5

-\ new
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ML tasks

Classification

Discrete prediction

Regression

Real-value prediction

Learning types

Supervised
(E.g. Simulation in
Particle Physics)

Unsupervised
(E.g. clustering)



... an entire ecosystem

scikit-learn
algorithm cheat-sheet

classification R—
: WORKING

glnseﬁble -— SGD
assifiers NOT :
e | cinbors
Classifier

NO

regression

NO

NOT
WORKING

. "= | <100K
- Linear
svC y

4

Lasso

predicting a —SVR(kemel-'rbf')
ves | category )
’ \ I EnsembleRegressors
o] doyouhave s & \
Spectral JIORKING labeled No <100K W or
Clustering — data samples §h°“1d be WORKING
m . YES important
CMM » @ NO RidgeRegression
. @ ' quantity SVR(kernel="linear)
YES categories
3 known
clustering V

']

samples

NoOT Spectral

WORKING Embedding
/ woranc I
- YES
<10K . . .
M T dimensionality
tough o prediciing . approximation .
@ @ reduction

Scikit-Learn: excellent ML library to start with, Python-based

‘ Cearn Besides algorithms, it also contains data 7



Input data
deote °
AP
°0, C:f{.
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Miscellanea of Algorithms

Nearest Neighbors

Linear SVM

Gaussian Process

Decision Tree

Random Forest

Neural Net

https://scikit-learn.org/stable/auto examples/classification/plot classifier comparison.html

AdaBoost

Naive Bayes

oo




Shallow Learning Decision Tree

no/

x?> ¢,
no /

x3 > ¢
no /

yes

{(x;, yl-)}f.il samples of labeled data

Partitions the data to increase sample purity

Finds optimal criteria x' > ¢; to separate data

categories

Category prediction based on the label of the majority
samples of the end leaf

User-defined hyper-parameters (tree depth, ...)

Very popular algorithm

“Non-parametric” algorithm, i.e. no (w * , b*)



Observation of H — yy in CMS

19.7 fb (8 TeV
x10°% (8 Tev)

[} | i T
g 80 cms 30 |
" ) : @ | 1 =
Boosted Decision Trees used in many aspects of the analysis 5 M (m25GeV) ] 2
o 60 i
S ¢ Data 20 %
(DU [ #8 MC background i o
ro—- o
401 vt "
» Selection of collision vertex - T1o
= Photon identification 2r
= Photon energy corrected with BDT regression f B 1
0 L I ot 1 L 1 = 1 1 - L
= Several BDT to extract signal in different categories 0o e e Ron D BT sco,%“o

PHOTON IDENTIFICATION

_ _ o = BDT discriminates photons from fakes (70):
Signal observed with 5.2¢ significance « Shower shape and isolation variables
ML impact on signal sensitivity equivalent of 50% more data

= Photon pr, iy 10


https://arxiv.org/pdf/1407.0558.pdf

Deep Learning

Neural Network Deep Learning

7 @ @ X a XA
t “Q’\& LT

/:&M&‘&

NP

@ Hidden Layer

@ Output Layer

(O Neuron O Input Layer

Neural networks with many hidden layers, each with a given number of artificial neurons
Capable of highly non-linear representations of the data

In principle, can model any function
Architecture -> hyper-parameters: number of layers, number of neurons/layer, ...

11



Artificial Neuron

x is the input feature
v is the target feature (or “label”)
w, b are the model trainable parameters

v = f(x,w, b) is the output (model prediction)

12

Activation function

e.g. linear for regression

e.g. sigmoid for classification

1
O=1r="




Artificial Neural Network Training

Loss function /.: measure of how good is y in predicting y (true value)

| &
= e.g. Mean squared error: L = ~ 2 ;= 9>
i

| &
= e.g. Binary cross-entropy: L = ~ Z y;-log(3d)+ (A =y)-log(1 -3,
i

Training objective: find w, b that minimise the Loss function

13



‘ Gradient Descent

Iterative optimisation algorithm to find the minimum of a function

Most frequently used when optimisation criterion is differentiable

Consider L = f(x, w, b)

7
/

Q[}' 7

Q‘ L7
"0"'["’01;?1 3
X
1 s

Gradient descent consists of rolling down the surface S A I
/X% ‘\“sg:::o,‘o"l' " ",l14
\\\\\\\\\\‘” ' l ." "Q‘:“:’:’:""‘"’ "' Ill 4
I i<
Compute and Back-propagate the gradient (iteratively) I N'ﬂ ‘ .'bﬂli{’f%‘%ﬁﬁ%ﬁ/[!![l
v ‘.v"gP .,v‘ ‘ /4-. h"'ra--”, "

L oL
Compute — and update w «— w—o—
ow ow

L oL
Compute — and update b « b—a—
ob ob

Optimisation criterion surface

o is an hyper-parameter that adjusts the learning rate

Each iteration is called a training “epoch”
14



DATA

Which dataset do
you want to use?

©

Ratio of training to
test data: 50%

Noise: 0

Batch size: 10
—e

REGENERATE

Epoch Learning rate

000,283 0.03

FEATURES

Which properties do
you want to feed in?

+ -

6 neurons

4

Activation Regularization
RelLU v None

+ — 4 HIDDEN LAYERS

+ - + -

8 neurons 8 neurons

The outputs are
mixed with varying
weights, shown
by the thickness
of the lines.

\
X
\\ TTARY
\ Wy
\\\\\\ 7/, //
\\

This is the output
from one neuron.
Hover to se@it
larger.

Regularization rate

v 0
+ -
6 neurons

~
————

Problem type

v Classification v

OUTPUT

Test loss 0.009
Training loss 0.010

Colors shows F
data, neuron and !

—

) 1
weight values. 0

[0 Showtestdata [] Discretize output

https://playground.tensorflow.org 15


https://playground.tensorflow.org

Practicable Deep Neural Networks

Many layers + many units

* Vanishing gradient: new activation functions flatten 10
made training possible (ReLU) (~2010) dense 22 (Dense)

" Advances in hardware: GPU increased speed activation_19 (Activation)
of computation by 100 (~2010) dense 23 (Dense)

= APIs: Keras ) Tensorflow (201 5) activation 20 (Activation)

dense 24 (Dense)

activation 21

Deep learning
Total params: 118,282
Trainable params:

" Man\/ parameters tO eStimate: {W’ b} Non-trainable params:

® Data thirst
16
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Particle Physics as a Big Data playground for ML

10m Big Data sizes '@
5
2 \
1M 140 M hours/day \\

of streaming (1 GB)

\
2
100k 71k B e-mail
~ g 202010-2021
m
L, . g
2 500 EB @
‘» k (total ‘
n 10 .4 ) 100 T objects stored <7
g s 51.1k PBly wice in S3 up t0 2021 (5 MB)
60 GBIs WLCG 240K pics/min. HL-LHC real
2 picsi
60k B spam 1.9k PBIy transfers in 2018 :} 40k EBlyr

i data expected in 2026
1000 SAKEBlY, e-mails(5 KB) Dropbox Sha’( ;dﬂ;‘;ozl Be
5 Cfohte 30+ B web pages LHC real
S, Gaspely 2021 (215MB) daiain2018 oo PBI;zoo PBI
X 300 PBY! 98.83 M new users N (i 4 HL-LHC Monte Carlo
100 y 263 PBly +1.17 M paid subs in 2020 J 252 PBly [ 240[PBly data expected in 2026
(1.5 GB and 500 GB, respectively) 160 PBly
8 PBly

5 720k hours/day

of video uploaded (1 GB) 62BBIY 65K pics/min. LHC Monte Carlo
2 shared in 2021 datain 2018
10 (2 MB) © Luca Clissa (2023)
Streaming Storage Production

data sources

E.g. LHC is an enormous source of data Lower rate Particle Physics experiments
= Number of collisions: 40 MHz, 1kHz recorded » Large simulation datasets to train ML
» High data dimensionality: O(100 M) readout units » Applied to real data



Anatomy of a HEP event

LHC example

= |dentify collision vertices
and particles:
= Track-finding
= Electron/jet/muon
ID/reconstruction
= Measure energy,
momenta, electric charge
= Jet flavour?
= Signal topology?

ML is key in many of these
tasks

Key:

tuon
Electron

e Charged Hadron (e.g.Pion)
— — — - Neutral Hadron {e.g. Neutron)
@ ===« Photon

Transverse slice
though CMS

Electromagnetic
Calorimeter

Superconducting
Soleroid

Iron return yoke interspersed
with Muon chambers

19




How to represent data?

... part of the definition of the ML algorithm

Tabular

Electron1_PT FatJeti_PT Jet1_PT Muoni_PT
0  227.793961 253.598358 254.124435 0.000000
1 0.000000 225.937729 228.712021  39.127575
2 68.204712 0.000000 144.771240 0.000000
3  133.825851 229.350952 219.542404 0.000000
4 0.000000 0.000000 127.972099 0.000000
5 82.530861 259.897095 206.621994 0.000000
6 0.000000 0.000000 119.139641 0.000000
7 170.190216 0.000000 199.339508 0.000000
8 0.000000 276.407806 275.428223 219.815781
9 43.247391 240.832916 240.927399 0.000000

[Translated] Azimuthal Angle (¢)

Image Graph

250 < p_leeV <260 GeV, 65 <mass/GeV <95
Pythia 8, QCD dijets, Vs = 13 TeV

22

Pixel P, [GeV]

Sequences

|
Track 1

-1 -0.5 ) 0.5 1
[Translated] Pseudorapidity (n)

Track 2

Track 3

Track 4
Track N

_/

\

T
ordered by |Sdo|

)Jet

[arXiv:1511.05190]

[arXiv:1807.09088]

[ATL-PHYS-PUB-2017-003]

20


https://arxiv.org/pdf/1511.05190.pdf
https://arxiv.org/pdf/1807.09088.pdf
http://cdsweb.cern.ch/record/2255226/files/ATL-PHYS-PUB-2017-003.pdf

Convolutional NNs for Neutrino Flavour

DUNE being set to study neutrino oscillations

* |ntense neutrino beam {vﬂ, Dﬂ} - dominated
" Underground far detector with 70 kTon of liquid argon (DUNE)
* Determining the neutrino flavour is key to the experiment

Sanford Underground
Research Facility

NEUTRINO
PRODUCTION

_y-zzzZZE7C
= e
St PARTICLE
DETECTOR

L UNDERGROUND
PARTICLE DETECTOR

Fermilab

4




Convolutional NNs for Neutrino Flavour

E.g. 12.2 GeV 7,

charged current
interaction

View 0

SE-ResNet-34
Blocks 1-2

View 1

SE-ResNet-34
Blocks 1-2

oncatenate

View 2
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Blocks 1-2
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sigmoid
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output

2006.15052 TR VE

|
DEEP UNDERGROUND
NEUTRINO EXPERIMENT

Multi-classification of signal images

" 35x35 pixel
* Signal time VS Detector wire

"  3views/event

Convolutional filters look for
discriminant patterns

>

g DUNE Simulation

2

2 L

=

w -

c L

K]

0.

S F v, Signal

3 [

N NC Background
0.6 Signal (pre-selection)

| Arb. unit
....... DUNE CDR (Fast MC)

0.4 —— DUNE (Full MC, CVN)
0.2

x 2 ) i [
"1 2 3 4 5 6 7 8 99
Reconstructed Energy (GeV)



https://arxiv.org/pdf/2006.15052.pdf

Cosmic ray composition with Genetic algorithms

Auger Observatory PIERRE

AUGER

OBSERVATORY

* Array of water Cherenkov detectors covering 3000 km? to study cosmic rays (£ > 10'8 ev)

Infere properties/origin of primary particle from extensive air showers
Determine muonic component

Validate shower simulation Water tank signal has muonic and

Measure primary particle mass electromagnetic components

v
<
(]
o
/M
2
p—
<
(=
1))
o
N
‘\‘-‘\ —
«i'

300 | T AbO
Time (25 ns bins) ~ 2°

-
..




1807.09024

Cosmic ray composition with Genetic algorithms

PIERRE
AUGER

I p OBSERVATORY

Number of muons

Regression DNN to find out the number of muons

" Hyper-parameters optimised with genetic algorithms
* Train a number of DNNs with different n° layers/n° neurons/activation functions
* DNN with better performance selected in binary tournaments, then crossed-over and mutated

Accuracy better than 10%, good precision

evaluation selection T e =om
' RISF: 266 3000 251
| ) L 1l =«
B B N = - - 54 QGSJetll-04 8
O = E>1085ey | 37
** 2000+ 0<45° **

1000

N B B O --EEXJ-

o L H o= H L
-20 -10 0 10 20 -20 -10 0 10 20
S ;ruc _ Sfrc(| [VEM] S ;imc _ S,fmd [VEM]
T T T T T T T T T T
Entries 33739 Entries 65231

M 0.13 L Fe M 0.16
. . 3000 RMs_ 27| ] 6000 RMS 248
P P
g g
Z %
' : :
1000 s 2000F
mutation crossover L , , , , L | ,
-20 -10 0 10 20 -20 -10 0 10 20 24

rue red rue red
Stme — spred [VEM] Sime — spred [VEM]


https://arxiv.org/pdf/1807.09024.pdf

ML in the future of HEP
HL-LHC upgrade

Many challenges and opportunities where ML can be a handle

* High pile-up: collisions per bunch crossing 33 — 140
* Noisy environment: ambiguous track hits reconstruction, collision vertex finding, pile-up energy subtraction,...

" Big data phase: 3000 fb_l, increased need for simulation

ATLAS

HL-LHC EXPERIMENT
Run3 | Run 4-5... HL-LHC (:‘ef:lzzu;voTLAs ITK

13.6 TeV 13.6-14 TeV

let

energy

HL-LHC

limit installation

2019 2020 2023 2024 2026 2027 2028 2029 IIIIIII
5t0

ATLAS - CMS mi
upgrade phase 1 .
2 x nominal Lumi HL upgrade

ALICE - LHCb i 2xiomkalliri QN o
upgrade

m integrated RIS
luminosity EELIVE{

25




Calorimeter simulation

Generative Al application

Measurements rely on comparisons between data and simulation (~1000 M for a typical analysis)

" Calorimeter showering is the heaviest load (particle multiplicity and overlap)

* Generate synthetic showers given a particle and the calorimeter geometry

* Train the generator by comparing synthetic to Geant4 showers

Generator

G(z)

\ 4

)~ ™  Geants
/ Simulation
b

L Discriminator
- D(X) —D[Blnary cross-entropy Real/Fake

\ GAN

_\/V Generation

E; =63.7 GeV

cell Y

Y

(b)
E, = 6.5GeV

20
18
16
14
12
1.0
08
0.6
04

2.0
18
16
14
12
10
08
0.6
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Data Quality Monitoring

Automating defect detection

Pre-defined routines fail to recognise novel
patterns of detector failure/defects and rely on
heavy human supervision

Anomaly detection outperforms in identifying
defects, regardless of previous knowledge

Eg. Based on the construction of saliency maps
using Convolutional Neural Networks

Layer
O 01 =

Layer

O 01 -

Layer

Run: 272011, W: 1.0, St: 1.0, Sec: 6.0

[y

04

counts

PR I U

10 20 30 20
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T T T T T T T T

o

Channe

|

50 60
Channe

(b)

Run: 273158, W: 0.0, St: 2.0, Sec: 12.0 8

P

50

Channel

1808.00911 |£

CMS,

‘Compact Muon Solenoid

v\

CMS Saliency Map, Run: 272011, W: 1.0, St: 1.0, Sec: 6.0
61»_{,...,.HT|HH|H..|,..rw.u_’
@ F
5K 4

ok E
[ R A R R A
0 10 20 30 40 50 60
Channel
(a)

CMS Saliency Map, Run: 275310, W: 1.0, St: 2.0, Sec: 7.0
51 ‘.‘|.HL“.‘HH,\.\.,H‘.‘{
> !‘ ]
35 ' -

= ]
: T ‘?
L b Do T v b Lo 1]
0 10 20 30 40 50 60
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(b)

CMS Saliency Map, Run: 273158, W: 0.0, St: 2.0, Sec: 12.0
. LN o L A o
%1 - -— E
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1 P | | P | |
10 20 30 40 50 60
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0.00

5.00
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0.00

5.00
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https://arxiv.org/abs/1808.00911

Anomaly detection in the search for New Physics

A primary LHC goal remains to conquer:
no sign of New Physics so farl...

ML used in direct searches, classifiers
trained to recognise specific signals




Inputs

Auto-Encoder —

SM prediction

--------- HG 1.0 TeV
----- HG 1.2 TeV
---HG 1.4 TeVv
- W/oHG 1.0 TeV
-.-W/oHG 1.2 TeV
-.- W/oHG 1.4 TeV
—— FCNC

X
= Training objective is to minimize input
reconstruction loss
= More common events will be better
reconstructed c
. . O 10 pp, Vs=13TeV,L=1501fb"
= Reconstruction error is a measurement < .
. ® 10 Sanitised Features
of anomaly/outlyingness S i
>
w 10
1 9 10°
min — E HAE(XZ, W) — Xz“ 10?
W n - 10
1
1
107! i T
_ |||||||§||'L'j‘!;|-|
Eur.Phys.J.C 81 (2021) 10°0"01 02 0.

PR I R
04 05 06

07 08 09 1
AE output

Reconstruction
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https://arxiv.org/pdf/2006.05432.pdf

‘ Summary

= ML is a universal tool in HEP, increasing the efficiency of many applications

= Started well back-ago before Deep Learning revolution

= Now we use increasingly lower information with deeper and more complex architectures

= Data representation as images, sets, graphs... to take advantage of the most powerful algorithms
= Deep Learning is also a key to address HEP's future challenges (simulation, tracking...)

30
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Jet Flavour identification

——3 tracks

b hadron \

Essential ingredient for many physics analysis (top, impact
nggs) parameter

¥ secondary

Per-jet probability of originating from {b, c, uds} vertex

quarks

- primary vertex
Explore unique characteristics of heavy flavour-jets \ ‘7 \

= “Large” lifetime of b/c-hadrons (~ps)
* Displaced secondary vertex
" Soft lepton from b/c hadron decay




13 TeV, 2016

Jet Flavour identification £ "Fcms —bijets

] § ‘°2§_ Simulation ¢ jets

State-of-the-art Deep Learning S 10 f+jets |
P i p,>20 GeV — udsg jets

New DeepCSV (DNN) using same variables of - /_’_,_,:—’Irr
102

shallow predecessor

107

" Number of secondary vertices (SV) 107

vl L
8 09 1

1075 Lt Lo bovna b Lo a b a Lo a Ly
0 0.1 02 03 04 05 06 07 O

DeepCSV P(b) discriminator

®= Number of tracks from SV

" SV mass
1 13 TeV, 2016
= Radial distance AR(track, jet) Z 'Foms R
§ B S_lmulatlon :
" Jet Lt +jets / 1
letpyr,n 810_1 b. > 20 GeV i
- 8 E 1 ‘.»:;/' %
L '*§ C / ]
Improved efficiency = / I
-2 *° .‘. .."
CMS g E e —goyom,
- S —Ccsww2 A
T —— W/ — DeepCSV.
E * : — cMVAv2 E
1712.07158 0 01 02 03 04 05 06 07 08 08 1 33
b jet efficiency



https://arxiv.org/pdf/1712.07158.pdf
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https://cds.cern.ch/record/2718948/files/ATL-PHYS-PUB-2020-014.pdf

Boosted Resonance tagging
Top, Higgs

Collisions with large energy transfer (Q) are more sensitive to New Physics effects

" Lead to boosted outgoing particles: hadronically decaying resonances are large-jets

Small-radius jets |

Large-radius jet
Identify the resonant particle

* t—> Wb — jjb (3 sub-jets, 1 b-sub-jet)

* H — bb (2 b-sub-jets)

* Reject non-resonant QCD jets

35

Boosted jets: Increasing transverse momentum, py



Boosted Resonance tagging

Xbb tagger

Per-jet probability of being {top,Higgs,QCD}, Multiclass DNN

* B-tagging information from 3 sub-jets

* Sub-jet probability of being {b,c,uds}

* Already based on Deep Learning

* Chaining ML algorithms...

Improvement w.r.t. simple requirement

" 2 b-sub-jets

ATLAS

EXPERIMENT

ATL-PHYS-PUB-2020-019
|. Ochoa LIP seminar
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http://cdsweb.cern.ch/record/2724739/files/ATL-PHYS-PUB-2020-019.pdf
https://indico.lip.pt/event/744/

Transferability of DL in

Sea I‘ChES fOI‘ N P TABLE I. Hyperparameters used by all DNNs.

Hyperparameter Value
Hidden Layers 3
= DNN implemented with Keras using Units 352
Tensorflow as backend Unit Activation Function Selu
, _ Unit Weights Initialiser LeCun Normal
= Network architecture: Bayesian Dropout Rate 10%
optimisation using Scikit-Optimize Initial Learning Rate 103
= Focus the hyper-parameter tuning Optimizer Nadam
where the probability for obtaining Maximum Epochs 1000

the optimal model is larger (depends

on past architecture trials) ¢ 0
x x>

ae® —a 1fxr <0

selu(z) = A {



Continue enhancing Generic Signal Searches

Unsupervised Learning (CWola)
Look for new resonances of the form A — B + C, {B,C} are large-radius jets

* {A,B,C} can be W, Z, graviton,...
* Classifier trained on data only: “signal” enriched sample against background enriched region
* Ifareal signal exists on data, the DNN will learn to recognise it

* Enhancement of bump huntin the mg- spectrum

Mixed Sample 1 Mixed Sample 2 . . . .
Pre-NN: sjde- :Signal: Side- : Signal| Side-
i band iregioni band

Before

selection
F— (NN input)

# of events (log-axis)

After NN
selection

) L
i, L3
/;Slgnal‘;‘
‘L H

. (1%, 10%)

Dijet mass (log-axis)



https://arxiv.org/pdf/2005.02983.pdf

