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SYNCHROTRON
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A synchrotron is a type of circular particle accelerator, that uses a
varying magnetic field, to curve the particles path and a
synchronized radiofrequency (RF) electric field, to accelerate
charged particles to very high energies.

The synchrotron accelerates the beam as a series of discrete
pulses or “bunches” as they are called. Each short pulse is
injected at low field and then the field rises in proportion to the
momentum of particles as they are accelerated.

Circulation frequency of the synchronous particle: Radius of the particle trajectory is constant.

Magnetic field increases
with beam momentum.

B - Bending magnet (dipole magnet)
FQ - Focussing quadrupole magnet
DQ - Defocusing quadrupole magnet
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A RF cavity is a resonant metallic structure (usually cylindrical or pillbox-
shaped) that confines an oscillating electric field at a specific
radiofrequency. This field interacts with charged particles, accelerating
them along the desired trajectory.

RF CAVITY

 Multi-cell Cavity
The RF cavities also maintain the particle bunches

tightly grouped, ensuring high luminosity at the
collision points and thereby maximizing the number

of particle collisions.
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PHASE FOCUSING 

M1 and N1 move toward the synchronism ⇒ STABLE 

M2 and N2 move away from synchronism ⇒ UNSTABLE

The phase stability occurs in synchronous
accelerators where the acceleration is made by
using radiofrequency electric fields.

If successive accelerating gaps (radio-frequency
cavities) are arranged such that a given particle
always sees the same RF phase and gets the
same energy gain, that particle is called
synchronous particle.



TYPES OF MAGNETS 
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Expansion of the magnetic field along the reference radius:

Dipole
 Bending

Quadrupole 
Focusing

Sextupole
 Correction

Dipole magnet

Quadrupole  magnet

Sextupole magnet

In a constant transverse magnetic field B, a particle will see
a constant deflecting force and the trajectory will be part
of a circle, whose bending radius ρ is determined by the
particle momentum p = mv and the external B field: 



Ideal circular orbit and real particle trajectory with
its transverse coordinates x and y 

The following differential equation describes the transverse
motion of a particle with respect to the design orbit.

Horizontal motion:

Vertical motion:

EQUATIONS OF
MOTION 
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Magnetic fields are used in general in circular accelerators to
provide the bending force and to focus the particle beam. 

Coordinate system used and orbit of an idealized particle 

Gradient fields generated by quadrupole lenses are used to do
this job. These lenses generate a magnetic field that increases
linearly as a function of the distance from the magnet centre: 

k along the particle trajectory is a periodic function and a
measure for focusing and defocussing forces from quadrupoles.



SOLUTION OF THE EQUATION OF MOTION  
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The general solution for the position and angle of the trajectory can be derived as a
function of the initial conditions x_0 and x_0′. In the case of a quadrupole, thin lenses,
dipole and drift, we obtain: 

or, written in a more convenient matrix form, 

Given the particle amplitude and angle in front of the lattice element, x_0 and x_0′, we obtain their values
after the element by a simple matrix multiplication. The matrix M depends on the properties of the magnet,
and we obtain the following expressions for three typical lattice elements.
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Focusing quadrupole (K>0): 

Defocusing quadrupole (K<0):

Drift space (K = 0): 
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Consider a storage ring built only out of focusing and defocusing quadrupoles and dipole magnets in between.

Starting in front of a focusing magnet, a typical part of this structure, expressed in matrix form, would be:

Single-particle trajectory in a storage ring (white). In grey, the pattern of the beta function is shown, which can
be interpreted as the maximum beam size or aperture needed in the example. 



TWISS PARAMETERS 
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 The Tune is the number of oscillations per turn, which is
nothing other than the overall phase advance of the

transverse oscillation per revolution in units of 2π.
Given the solution of Hill’s equation:

And we get an expression for the integration constant e

 Liouville’s theorem: all particles enclosed by an
envelope ellipse will stay within that ellipse



For a periodic accelerator (circular accelerator) or beam line with
periodic magnetic structure the optical functions                             are
also periodic and a single particle is circulating on the phase-space
ellipse at a given s.
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The ellipse equation describes the position of particles in transverse
phase space for a given emittance e with the initial phase e at the
position s of the reference particle in the accelerator ring.

The ensemble of many single particles forms a pattern of
overlapping trajectories that in the end we will observe as transverse
intensity (or charge) distribution and that we will use to define the
beam size. 

 maximum amplitude, or beam size, is obtained from
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DISPERSIVE EFFECTS 
Until now we have treated the beam and the equation of motion as a mono-energetic problem.
Unfortunately, in the case of a realistic beam, we have to deal with a considerable distribution of the
particles in energy or momentum.

This momentum spread will lead to several effects concerning the bending of the dipole magnets and the
focusing strength of the quadrupoles.

xi is an additional contribution that has yet to be determined. For convenience, we usually
normalize this second term and define a function, the so-called dispersion: 



REFERENCES
&
BIBLIOGRAPHY

B.J. Holzer, Introduction to Transverse Beam Dynamics,
CERN, Geneva, 2014.

S. Myers and H. Schopper, Particle Physics Reference,
Library Volume 3: Accelerators and Colliders, CERN
Geneva, 2013.

 J. Le Duff, Phase Stability, LAL, Orsay, France.

 H. Wiedemann, Particle Accelerator Physics, Springer,
1993.

A. Lehrach, Introduction to Accelerator Physics, RWTH,
Germany, 2024.

M. Berz, K. Makino, An Introduction to Beam Physics,
Taylor & Francis Ltd, 2016.

14


