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Intro



Introduction

Much of particle physics is based on experimental measurements of

particle decay rates and interaction cross sections. These observable

phenomena correspond to transitions between different quantum

mechanical states. In non-relativistic quantum mechanics, transition rates

are calculated using Fermi’s golden rule, which I will derive next.
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Derivation of Fermi’s golden rule



Fermi’s golden rule

Let ϕk(x , t) denote the normalized solutions to the Schrödinger equation

corresponding to the unperturbed, time-independent Hamiltonian Ĥ0,

where

Ĥ0ϕk = Ekϕk ⟨ϕj |ϕk⟩ = δij

When an interaction Hamiltonian Ĥ ′(x , t) is introduced, capable of

inducing transitions between states, the time-dependent Schrödinger

equation takes the form:

i
dψ

dt
=
[
Ĥ0 + Ĥ ′(x , t)

]
ψ
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Fermi’s golden rule

The wavefunction ψ(x , t) can be written as a linear combination of the

eigenstates of the unperturbed Hamiltonian:

ψ(x , t) =
∑
k

ck(t)ϕk(x)e−iEk t

The time-dependent coefficients ck(t) account for the transitions

between states induced by the interaction.
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Fermi’s golden rule

Taking the wavefunction’s time derivative,

i
dψ

dt
= i
∑
k

[
dck
dt

ϕke
−iEk t − ickEkϕke

−iEk t

]
=
∑
k

ckEkϕke
−iEk t + i

∑
k

dck
dt

ϕke
−iEk t

=
∑
k

Ĥ0ckϕke
−iEk t + i

∑
k

dck
dt

ϕke
−iEk t

We then get, ∑
k

Ĥ ′ck(t)ϕk(x)e−iEk t = i
∑
k

dck
dt

ϕke
−iEk t
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Fermi’s golden rule

Assume that at time t = 0, the initial wavefunction is |i⟩ = ϕi , and the

coefficients satisfy ck(0) = δik . If the perturbing Hamiltonian, assumed

to be constant for t > 0, is sufficiently weak such that ci (t) ≈ 1 and

ck ̸=i (t) ≈ 0 for all times, then, to first order, the previous equation can

be approximated as:

i
∑
k

dck
dt

ϕke
−iEk t ≈ Ĥ ′ϕie

−iEi t
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Fermi’s golden rule

The differential equation for the coefficient cf (t), corresponding to

transitions to a particular final state |f ⟩ = ϕf , is derived by taking the

inner product of both sides of the previous equation with ϕf (x) and using

the orthogonality condition:

⟨f |i
∑
k

dck
dt

|k⟩e−iEk t = ⟨f |Ĥ ′|i⟩e−iEi t

i
∑
k

dck
dt

e−iEk t⟨f |k⟩ = ⟨f |Ĥ ′|i⟩e−iEi t

i
dcf
dt

e−iEf t = ⟨f |Ĥ ′|i⟩e−iEi t
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Fermi’s golden rule

The differential equation for the coefficient is

dcf
dt

= −i⟨f |Ĥ ′|i⟩e i(Ef −Ei )t

where

Tfi ≡ ⟨f |Ĥ ′|i⟩ =
∫
ϕ∗f (x)Ĥ

′ϕi (x)d3x ,

is the transition matrix element and has dimensions of energy.
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Fermi’s golden rule

At time t = T , the amplitude for transitions to the state |f ⟩ is given by

the integral

cf (T ) = −i

∫ T

0

Tfie
i(Ef −Ei )tdt

If the perturbing Hamiltonian is time-independent, the term ⟨f |Ĥ ′|i⟩ is
also time-independent, and thus

cf (T ) = −iTfi

∫ T

0

e i(Ef −Ei )tdt
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Fermi’s golden rule

The probability of a transition to the state |f ⟩ is given by

Pfi = cf (T )c∗f (T ) = |Tfi |2
∫ T

0

∫ T

0

e i(Ef −Ei )te−i(Ef −Ei )t
′
dt dt ′

The transition rate dΓfi from the initial state |i⟩ to the specific final state

|f ⟩ is therefore

Γfi =
Pfi

T
=

1

T
|Tfi |2

∫ +T/2

−T/2

∫ +T/2

−T/2

e i(Ef −Ei )te−i(Ef −Ei )t
′
dt dt ′

where the limits of integration are shifted by the substitutions t → t + T
2

and t ′ → t ′ + T
2 .
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Fermi’s golden rule

The exact solution to the previous integral takes the form

sin2 x

x2
x =

(Ef − Ei )T

2ℏ
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It is evident that the transition rate is substantial only for final states

where Ef ≈ Ei and that energy is conserved within the limits of the

energy–time uncertainty relation (∆E∆t ∼ ℏ). 11



Fermi’s golden rule

The narrowness of the functional form of this last equation means that

for all practical purposes, it can be written as

Γfi = |Tfi |2 lim
T→∞

{
1

T

∫ +T/2

−T/2

∫ +T/2

−T/2

e i(Ef −Ei )te−i(Ef −Ei )t
′
dt dt ′

}

Using the definition of the Dirac delta-function the integral over dt ′ can

be replaced by 2πδ(Ef − Ei )

Γfi = 2π |Tfi |2 lim
T→∞

{
1

T

∫ +T/2

−T/2

e i(Ef −Ei )tδ(Ef − Ei )dt

}
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Fermi’s golden rule

If there are dn accessible final states within the energy range

Ef → Ef + dEf , then the total transition rate Γfi is given by

Γfi = 2π

∫
|Tfi |2

dn

dEf
lim

T→∞

{
1

T

∫ +T/2

−T/2

e i(Ef −Ei )tδ(Ef − Ei )dt

}
dEf

= 2π

∫
|Tfi |2

dn

dEf
δ(Ef − Ei ) lim

T→∞

{
1

T

∫ T/2

−T/2

dt

}
dEf

= 2π

∫
|Tfi |2

dn

dEf
δ(Ef − Ei )dEf

= 2π |Tfi |2
∣∣∣∣ dndEf

∣∣∣∣
Ei

This last term is referred to as the density of states, and is often written

as ρ(Ei ).
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Fermi’s golden rule

Fermi’s golden rule for the total transition rate is thus given by

Γfi = 2π |Tfi |2 ρ(Ei )

where, to first order, Tfi = ⟨f |Ĥ ′|i⟩ . If we wanted to take this to the

second order,

Tfi = ⟨f |Ĥ ′|i⟩+
∑
k ̸=i

⟨f |Ĥ ′|k⟩⟨k |Ĥ ′|i⟩
Ei − Ek

.

The transition rate between two states depends on the transition matrix

element, which contains the fundamental particle physics, and the density

of final states, which depends on the kinematics of the process being

considered.
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Phase space and wavefunction

normalisation



Phase space and wavefunction normalisation

So far, we have been discussing the non-relativistic treatment of Fermi’s

golden rule and before discussing the relativistic treatment we will discuss

the decay rate for the process a → 1 + 2. To first order in perturbation

theory, the transition matrix element is

Tfi = ⟨ψ1ψ2|Ĥ ′|ψa⟩ =
∫
ψ∗
1ψ

∗
2 Ĥ

′ψ∗
ad

3x

In the Born approximation, the perturbation is assumed to be weak, and

both the initial and final state particles are described by plane waves of

the form

ψ(x , t) = Ae i(p·x−Et)

15



Phase space and wavefunction normalisation

It is standard practice to adopt a normalization scheme in which each

plane wave corresponds to a single particle confined within a cubic

volume of side length a.

16



Phase space and wavefunction normalisation

This scheme implies that

• the normalisation constant is

A2 =
1

a3
=

1

V

• the wavefunction satisfies the periodic boundary conditions

ψ(x + a, y , z) = ψ(x , y , z)...

• The periodic boundary conditions on the wavefunction imply that

the components of momentum are quantised

(px , py , pz) = (nx , ny , nz)
2π

a
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Phase space and wavefunction normalisation

This imposes a restriction on the allowed momentum states, limiting

them to a discrete set as illustrated in figure b. Each state in momentum

space occupies a cubic volume of

d3p = dpxdpydpz =

(
2π

a

)3

=
(2π)3

V

The number of states dn with momentum magnitude in the range

p → p + dp is given by the volume of the spherical shell in momentum

space at radius p and thickness dp, divided by the average volume

occupied by a single state, (2π)3/V

dn = 4πp2dp × V

(2π)3
=⇒ dn

dp
=

4πp2

(2π)3
V

18



Phase space and wavefunction normalisation

The density of states appearing in Fermi’s golden rule can then be

determined from

ρ(E ) =
dn

dE
=

dn

dp

∣∣∣∣ dpdE
∣∣∣∣

The density of states represents the number of accessible momentum

states for a given decay and increases with the momentum of the

final-state particle. Therefore, all else being equal, decays to lighter

particles, which are produced with larger momentum, are favored over

decays to heavier particles.
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Phase space and wavefunction normalisation

The calculation of the decay rate does not depend on the normalization

volume, as the volume dependence in the phase space expression is

canceled by the factors of V associated with the wavefunction

normalization that appears in the square of the transition matrix element.

Since the volume does not affect the final result, it is convenient to

normalize to one particle per unit volume by setting V = 1. In this case,

the number of accessible states for a particle associated with an

infinitesimal volume in momentum space, d3pi , is simply

dni =
d3pi

(2π)3
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Phase space and wavefunction normalisation

For the decay of a particle into a final state consisting of N particles,

there are N − 1 independent momenta in the final state. Therefore, the

number of independent states for an N-particle final state is

dn =
N−1∏
i=1

dni =
N−1∏
i=1

d3pi

(2π)3

This can be expressed in another form, by including the momentum space

volume element for the N-th particle, d3pN , and using a

three-dimensional delta function to enforce momentum conservation

dn = (2π)3
N∏
i=1

d3pi

(2π)3
δ3

(
pa −

N∑
i=1

pi

)

where pa is the momentum of the decaying particle.
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Lorentz-invariant phase space

The wavefunction normalization of one particle per unit volume is not

Lorentz invariant, as it applies only to a specific frame of reference. In a

different reference frame, the original normalization volume will be

Lorentz contracted by a factor of 1/γ along the direction of relative

motion. Thus, the original normalization of one particle per unit volume

corresponds to a normalization of γ = E/m particles per unit volume in

the boosted frame. Therefore, a Lorentz-invariant wavefunction

normalization must be proportional to E particles per unit volume, such

that the increase in energy compensates for the Lorentz contraction. The

standard convention is to normalize to 2E particles per unit volume.∫
ψ∗ψd3x = 1

∫
ψ′∗ψ′d3x = 2E ψ′ =

√
2Eψ
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Lorentz-invariant phase space

For a general process, a+ b + · · · → 1 + 2 + · · · , the Lorentz-invariant

matrix element is defined as

Mfi = ⟨ψ′
1ψ

′
2 · · · |Ĥ ′|ψ′

aψ
′
b · · · ⟩ =

√
2E12E2 · · · 2Ea2Eb · · ·Tfi
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Back to Fermi’s golden rule

For a two-body decay a → 1 + 2, the quantum mechanical transition rate

is given by Fermi’s golden rule

Γfi = 2π

∫
|Tfi |2 δ(Ea − E1 − E2)dn

= (2π)4
∫

|Tfi |2 δ(Ea − E1 − E2)δ
3 (pa − p1 − p2)

d3p1

(2π)3
d3p2

(2π)3

=
(2π)4

2Ea

∫
|Mfi |2 δ(Ea − E1 − E2)δ

3 (pa − p1 − p2)
d3p1

(2π)32E1

d3p2

(2π)32E2

The matrix element Mfi is defined in terms of wavefunctions with a

Lorentz-invariant normalization, and the phase space integration

elements, d3pi/Ei , are also Lorentz invariant. Therefore, the integral is

Lorentz invariant, and thus it represents Fermi’s golden rule in a

Lorentz-invariant form.
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Particle decays



Example i

z
a

1

p∗

2

−p∗

θ

Consider the two-body decay a → 1 + 2. In the centre-of-mass frame, the

decaying particle is at rest, so Ea = ma and pa = 0, and the two daughter

particles are produced back-to-back with three-momenta p∗ and −p∗. In

this frame, the decay rate is given by

Γfi =
1

8π2ma

∫
|Mfi |2 δ(ma − E1 − E2)δ

3(p1 + p2)
d3p1 d

3p2

4E1E2
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Example ii

After some manipulation and using d3p1 = p21dp1 sin θdθdϕ = p21dp1dΩ,

the previous equation becomes

Γfi =
p∗

32π2m2
a

∫
|Mfi |2 dΩ

This is the general expression for any two-body decay. The fundamental

physics is contained in the matrix element and the additional factors arise

from the phase space integral.
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Cross sections



Interaction cross sections

The calculation of interaction rates is slightly more complicated than that

for particle decays because it is necessary to account for the flux (number

of particles crossing a unit area per unit time) of initial-state particles.

In the simplest scenario, a beam of particles of type a with flux ϕa passes

through a region containing nb target particles of type b per unit volume.

The interaction rate per target particle, rb, is proportional to the flux and

can be written as

rb = σϕa

The fundamental physics is in σ, which has dimensions of area and is

referred to as the interaction cross section. In general, the cross section

represents the underlying quantum mechanical probability that an

interaction will occur.
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Interaction cross sections

Consider a single incident particle of type a moving with velocity va
through a region of area A that contains nb particles of type b per unit

volume, with b-particles moving in the opposite direction at velocity vb.

In a time interval δt, particle a traverses a region containing

δN = nb(va + vb)A δt particles of type b.
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Interaction cross sections

The interaction probability can be obtained by dividing the effective total

cross-sectional area of the δN particles by the area A.

δP =
δNσ

A
= nb(va + vb)σδt = nbvσδt

Hence the interaction rate for each particle of type a is

ra =
dP

dt
= nbvσ

For a beam of particles of type a, with number density na confined to a

volume V , the total interaction rate is

rate = ranaV = nbvσnaV = ϕNbσ

= flux×# target particles× cross section
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Interaction cross sections

Thus,

σ =
number of interactions per unit time per target particle

incident flux
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Example

va vb
a b

1

2

Consider the scattering process a+ b → 1 + 2, as observed in the rest

frame, where the particles of type a have velocity va and the particles of

type b have velocity vb.
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Example

If the number densities of the particles are na and nb, the interaction rate

in the volume V is given by

rate = ϕanbVσ = (va + vb)nanbVσ

Normalizing the wavefunctions to one particle in a volume V gives

na = nb = 1/V , for which the interaction rate in the volume V is

Γfi =
va + vb

V
σ

It is once again convenient to adopt a normalization of one particle per

unit volume. With this choice, the cross section is related to the

transition rate by

σ =
Γfi

va + vb

32



Interaction cross sections

The transition rate Γfi is given by Fermi’s golden rule, resulting in

σ =
(2π)4

va + vb

∫
|Tfi |2 δ(Ea+Eb−E1−E2)δ

3(pa+pb−p1−p2)
d3p1

(2π)3
d3p2

(2π)3

or, in the Lorentz-invariant form,

σ =
(2π)−2

4EaEb(va + vb)

∫
|Mfi |2 δ(Ea+Eb−E1−E2)δ

3(pa+pb−p1−p2)
d3p1

2E1

d3p2

2E2
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Interaction cross sections

The most convenient frame choice is the centre-of-mass frame where

pa = −pb = p∗
i , p1 = −p2 = p∗

f and the centre-of-mass energy is√
s = (E∗

a + E∗
b ). In this case the cross section takes the form

σ =
(2π)−2

4p∗i
√
s

∫
|Mfi |2 δ(

√
s − E1 − E2)δ

3(p1 + p2)
d3p1

2E1

d3p2

2E2

After some manipulation,

σ =
1

64π2s

p∗f
p∗i

∫
|Mfi |2 dΩ∗

This represents the cross section for any two-body → two-body process.
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Summary



Summary i

1. We started by deriving Fermi’s golden rule

Γfi = 2π |Tfi |2 ρ(Ei )

and the density of states

ρ(Ei ) =

∣∣∣∣ dndEf

∣∣∣∣
Ei

dn = (2π)3
N∏
i=1

d3pi

(2π)3
δ3

(
pa −

N∑
i=1

pi

)

and finally the Lorentz-invariant matrix element

Mfi = ⟨ψ′
1ψ

′
2 · · · |Ĥ ′|ψ′

aψ
′
b · · · ⟩ =

√
2E12E2 · · · 2Ea2Eb · · ·Tfi
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Summary ii

2. We then obtained the result for a 2-body decay (a → 1 + 2)

Γfi = (2π)4
∫

|Tfi |2 δ(Ea − E1 − E2)δ
3 (pa − p1 − p2)

d3p1

(2π)3
d3p2

(2π)3

=
(2π)4

2Ea

∫
|Mfi |2 δ(Ea − E1 − E2)δ

3 (pa − p1 − p2)
d3p1

(2π)32E1

d3p2

(2π)32E2

3. and for a 2-body → 2-body scattering process (a+ b → 1 + 2)

σ =
(2π)4

va + vb

∫
|Tfi |2 δ(Ein − Eout)δ

3(pin − pout)
d3p1

(2π)3
d3p2

(2π)3

=
(2π)−2

4EaEb(va + vb)

∫
|Mfi |2 δ(Ein − Eout)δ

3(pin − pout)
d3p1

2E1

d3p2

2E2
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Summary iii

4. After that we’ve done a few examples

4.1 For a 2-body (a → 1 + 2) decay in the rest frame of a

Γfi =
p∗

32π2m2
a

∫
|Mfi |2 dΩ

4.2 For a 2-body → 2-body (a+ b → 1 + 2) scattering in the collision

centre of mass frame

σ =
1

64π2s

p∗
f

p∗
i

∫
|Mfi |2 dΩ∗
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