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Why perturbation theory?

Simple world ,

The full Hamiltonian of the problem is solvable; in other words, one can
find the eigenstates and the corresponding energies of those states.

Ĥ = Ĥ0

Simple to the point is boring... transitions between different energy
eigenstates do not occur because the Hamiltonian is interaction free, and
the system evolves "constant" in time.

i i

The initial and final states are identical, reflecting the absence of
interactions.
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Why perturbation theory?
Real world /

Now the Hamiltonian includes interactions: Ĥ = Ĥ0 + V̂ .

The transition rate Γi→f between an initial state |i⟩ and a final state |f ⟩ is
given by Fermi’s golden rule

Γi→f = 2π|Tfi |2ρ(Ef )

where Tfi is the transition matrix element, given by the perturbation
expansion

Tfi = ⟨f |V |i⟩ +
∑
j ̸=i

⟨f |V |j⟩⟨j |V |i⟩
Ei − Ej

+ · · ·

j is the intermediate state.
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How the interaction potential acts?

Tfi = ⟨f |V |i⟩ +
∑
j ̸=i

⟨f |V |j⟩⟨j |V |i⟩
Ei − Ej

+ · · ·

The first two terms in the perturbation series can be viewed as “scattering
in a potential” and “scattering via an intermediate state j”.

In Quantum Field Theory, interactions between particles are mediated by
the exchange of other particles and there is no mysterious action at a
distance. The forces between particles result from the transfer of the
momentum carried by the exchanged particle.
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In QFT language

The first order can be ignored...

⟨f |V |i⟩ = 0.

Diagrams without external legs (vacuum bubbles) correspond to
vacuum-to-vacuum amplitudes.

External field interactions shift the energy, but since only energy
differences matter, they don’t contribute to measurable interactions.
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Time-ordered perturbation theory
Considering the particle interaction a + b → c + d , which can occur via an
intermediate state corresponding to the exchange of one particle X. The
process may proceed in 2 ways:

• Particle a emits particle X which is later absorbed by particle b:

|i⟩ ≡ a + b, |j⟩ ≡ c + X + b, |f ⟩ ≡ c + d (left)

• Particle b emits particle X̃ which is later absorbed by particle a:

|i⟩ ≡ a + b, |j⟩ ≡ a + X̃ + d , |f ⟩ ≡ c + d (right)
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2 Time-Orders

The full calculation must include all possible time orderings to ensure that
the final result is Lorentz invariant (independent of the observer’s frame
of reference).

• Left: |j⟩ ≡ c + X + b

T ab
fi = ⟨f |V |j⟩⟨j |V |i⟩

Ei − Ej
= ⟨d |V |b + X ⟩⟨c + X |V |a⟩

(Ea + Eb) − (Ec + EX + Eb)

• Right: |j⟩ ≡ a + X̃ + d

T ba
fi = ⟨f |V |j⟩⟨j |V |i⟩

Ei − Ej
= ⟨c|V |a + X̃ ⟩⟨X̃ + d |V |b⟩

(Ea + Eb) − (Ea + EX̃ + Ed)
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• Left: |j⟩ ≡ c + X + b

T ab
fi = ⟨f |V |j⟩⟨j |V |i⟩

Ei − Ej
= ⟨d |V |b + X ⟩⟨c + X |V |a⟩

(Ea + Eb) − (Ec + EX + Eb)

The interactions at the two vertices are defined by the non-invariant
matrix elements

Vji = ⟨c + X |V |a⟩, Vfj = ⟨d |V |X + b⟩.

The non-invariant matrix elements are related to the Lorentz-invariant
matrix elements by

Vji = Ma→c+X

(2Ea2Ec2EX )1/2 , Vfj = Mb+X→d

(2Eb2Ed2EX )1/2 .
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Assuming the simplest possible Lorentz-invariant coupling, namely a scalar:

Vji = ga

(2Ea2Ec2EX )1/2 , Vfj = gb

(2Eb2Ed2EX )1/2 .

Therefore, the second-order term in the perturbation series is

T ab
fi = 1

2EX
· 1

(2Ea2Eb2Ec2Ed)1/2 · gagb
(Ea − Ec − EX ) .

The LI matrix element for this time order is then

Mab
fi = (2Ea2Eb2Ec2Ed)1/2 T ab

fi = 1
2EX

· gagb
(Ea − Ec − EX ) .

Notes:
• Mab

fi is not Lorentz-invariant - order of events depends on frame.
• Momentum is conserved at each vertex, but energy is not (Ej ̸= Ei).
• Particle X is on mass shell.
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Repeating the same steps for the other time ordering yields...

Mba
fi = (2Ea2Eb2Ec2Ed)1/2 T ba

fi = 1
2EX

· gagb
(Eb − Ed − EX ) .

The total amplitude is given by the sum of the two time-ordered
amplitudes

Mfi = Mab
fi + Mba

fi = gagb
2EX

·
( 1

Ea − Ec − EX
+ 1

Eb − Ed − EX

)
,

which, using energy conservation Eb − Ed = Ec − Ea, can be written

Mfi = gagb
2EX

·
( 1

Ea − Ec − EX
− 1

Ea − Ec + EX

)
= gagb

(Ea − Ec)2 − E 2
X

.
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Propagator

By the relativistic dispersion relation and momentum conservation,

Mfi = gagb
q2 − m2

X

where q = pa − pc is the momentum of the exchanged virtual particle X.

The sum over all possible time-orderings is represented by a Feynman
diagram. Both momentum and energy are conserved at the interaction
vertices of a Feynman diagram.
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Conclusion

Mfi = gagb
q2 − m2

X

Feynman diagram
• Momentum and energy are

conserved in vertices.
• Exchanged particle is off

mass shell.
• X is a virtual particle.

Time-ordered
• Momentum is conserved in

vertices.
• But energy is not conserved.
• Exchanged particle is on

mass shell.
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