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Why perturbation theory?

Simple world ©

The full Hamiltonian of the problem is solvable; in other words, one can
find the eigenstates and the corresponding energies of those states.

H = Ho
Simple to the point is boring... transitions between different energy

eigenstates do not occur because the Hamiltonian is interaction free, and
the system evolves "constant" in time.

The initial and final states are identical, reflecting the absence of
interactions.
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Why perturbation theory?
Real world ®

Now the Hamiltonian includes interactions: H = I:Io +V
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The transition rate ;s between an initial state |/) and a final state |f) is
given by Fermi’s golden rule

Fior = 27| T4|* p(Er)

where Ty is the transition matrix element, given by the perturbation
expansion

, (FIVL) GIVID
T = E
J#i
j is the intermediate state.
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How the interaction potential acts?
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The first two terms in the perturbation series can be viewed as “scattering
in a potential” and “scattering via an intermediate state j".

Vi

In Quantum Field Theory, interactions between particles are mediated by
the exchange of other particles and there is no mysterious action at a
distance. The forces between particles result from the transfer of the
momentum carried by the exchanged particle.
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In QFT language

The first order can be ignored...

(FIV]i) = 0.

Diagrams without external legs (vacuum bubbles) correspond to
vacuum-to-vacuum amplitudes.
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External field interactions shift the energy, but since only energy
differences matter, they don’t contribute to measurable interactions
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Time-ordered perturbation theory

Considering the particle interaction a + b — ¢ + d, which can occur via an
intermediate state corresponding to the exchange of one particle X. The
process may proceed in 2 ways:

Space
Space

Time Time
= Particle a emits particle X which is later absorbed by particle b:
iy=a+b, |)y=c+X+b, |f)=c+d (left)
= Particle b emits particle X which is later absorbed by particle a:
iY=a+b, [y=a+X+d, |f)=c+d (right)
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2 Time-Orders

The full calculation must include all possible time orderings to ensure that

the final result is Lorentz invariant (independent of the observer's frame
of reference).

® Left: j)=c+X+b
T2 — (FIVIGIVIED _ (dV]b+ X){c+ X|V]a)

Ei—E  (Es+ Ep)— (Ec+ Ex + Ep)
e Right: [)=a+X+d

Tha _ (FIVIGIVEY (el V]a+ X)X +d|V|b)
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o Left: j)=c+X+b
T2 = (FIVIRUIVIED) _  {d]V]b+ X){c+ X]|V]a)

Ei— E (E2 + Ep) — (Ec + Ex + Ep)

The interactions at the two vertices are defined by the non-invariant
matrix elements

Vii=(c+ X|V]a), Vg=(d|V|X+b).

The non-invariant matrix elements are related to the Lorentz-invariant
matrix elements by

Ve — Maetrx - Mpyx—d
S RE2E2E)Y? T (2E,2E42Ex)Y?
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Assuming the simplest possible Lorentz-invariant coupling, namely a scalar:

8a 8b

Vi = . V= .
T RE2E2E)Y? T (2E,2E42Ex)Y?

Therefore, the second-order term in the perturbation series is

Tab — L 1 : £a8b
i " 2Ex (2E,2Ex2E2E Y2 (E,— E. — Ex)’

The LI matrix element for this time order is then

1

ab 1/2 Tab 8a8b

P = (2E,2EL2E 2E, T7° = : .
Mz (2£22E,2E2E4) F 2Ex (E,— Ec — Ex)

Notes:
® M3b is not Lorentz-invariant - order of events depends on frame.
® Momentum is conserved at each vertex, but energy is not (E; # E;).

® Particle X is on mass shell.
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Repeating the same steps for the other time ordering yields...

1

ba 1/2 Tba 8a8b
H _— 2E 2E 2E 2E N - * .
M ( actbete d) f 2Ex (Eb — Ey — Ex)

The total amplitude is given by the sum of the two time-ordered
amplitudes

o ab b_a_gagb_ 1 1 )
Mi = M+ Mi"= 5, (Ea—Ec—Ex+Eb—Ed—Ex !

which, using energy conservation E, — E4 = E. — E,, can be written

"7 2Ex \E,—E.—Ex E,—E.+Ex) (E.—E)?—E2
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Propagator

By the relativistic dispersion relation and momentum conservation,

2
qz_mx

where g = p, — pc is the momentum of the exchanged virtual particle X.

a c

The sum over all possible time-orderings is represented by a Feynman
diagram. Both momentum and energy are conserved at the interaction
vertices of a Feynman diagram.
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Conclusion

8a8b
Mg = - 5
qs — my
a c c
X = X + ~
X
b d b d
Feynman diagram Time-ordered
® Momentum and energy are ® Momentum is conserved in
conserved in vertices. vertices.
® Exchanged particle is off ® But energy is not conserved.
mass shell. ® Exchanged particle is on
e X is a virtual particle. mass shell.

12713



References

[1] M. Thompson, Modern Particle Physics, Cambridge University Press,
2013.

[2] R. Gongalo, High Energy Physics: Interactions by Particle Exchange,
Lecture Slides, 2025.

13713



