AMS collaboration at LIP

LIP has been involved since beginning of the experiment (1998).

Lithium.

Positron

Beryllium,

Nitrogen, Oxygen, Antiproton

Daily: Proton, Helium, Electron,

Boron.

Since AMS' launch, 29 papers were published by the collaboration covering the following topics:

Primary & Secondary Nuclei Fluxes Time-resolved Particle Fluxes

Helium. Proton. Electron. Positron. Antiproton. Boron. Carbon. Oxygen, Lithium. Beryllium, Boron. Nitrogen, Sodium, Aluminium, Fluorine, Iron, Neon, Magnesium, Silicon

Isotopic Fluxes

³He & ⁴He, ²H, ⁶Li & ⁷Li (Accepted)

AMS-LIP Physics Topics

- Time Variability of the Cosmic-ray Flux
- Isotopes (D, Li, B, C,...)
- **RICH** reconstruction monitoring and analysis

Landmarks and Group Updates

From 2024 till now...

AMS collaboration papers: 3 (Deuterons, Nuclei and Antiprotons)

Few authors papers: 2

M. Borchelini, F. Barão, M. Vecchi, **L. Mano**, *Feature selection techniques for CR isotope identification with the* AMS-02 experiment in space, Particles 7 (2024) 2, 417-434

D. Pelosi, F. Barão, B. Bertucci, E. Fiandrini, M. Orcinha, A. Reina Conde, N. Tomassetti, *Cross-correlation analysis for cosmic ray flux forecasting*, EPJ Web Conf. 319 (2025) 13004

Additionally, two conference proceedings accepted, three new papers undergoing writing, several talks and posters at international conferences (ECRS, ESWW, EGU, ...), and invited lectures and seminars.

Theses and students:

Bachelor student: **José Machado** (IST – University of Lisbon, ongoing) Master student: **Guilherme Gaspar** (IST – University of Lisbon, ongoing) Master student: **Margherita Fioroni** (University of Perugia, *defended*) PhD student: **João Antunes** (IST – University of Lisbon & Shandong University, ongoing)

Internships:

Duarte Faustino, Pedro Ramos, Analysis of temporal signals

Ongoing research tasks:

RICH studies – F. Barão, G. Gaspar, J. Antunes, L. Arruda Time Variability of Cosmic-ray flux – M. Orcinha, F. Barão, J. Antunes Isotopic fluxes – F. Barão, G. Gaspar, J. Antunes, S. Ramos, P. Bordalo Geomagnetic field and Space radiation studies – M. Orcinha, F. Barão

Main international research collaborations:

Perugia University / INFN – Solar Modulation: phenomenology and modelling; Space radiation: dose and magnetic environment in low orbit
 Geneva University – Isotopic fluxes, RICH studies
 Shandong University / SDIAT – Isotopic fluxes, RICH studies

AMS Lithium Isotopic Fluxes

Properties of cosmic lithium isotopes measured by the Alpha Magnetic Spectrometer, M. Aguilar et al. (<u>Accepted</u>), PRL

Preliminary work

Solar Modulation of Galactic CR's

1D equation with an effective advection

$$K\frac{\partial^2 f}{\partial r^2} + \left(\frac{2K}{r} - V_{\rm SW} - V_{\rm a}\right)\frac{\partial f}{\partial r} - \frac{2V_{\rm a}}{r}f + \frac{2V_{\rm SW}}{3r}\frac{\partial f}{\partial\ln p} = 0$$

Work presented in several conferences, article in last stages of preparation.

Diffusion coefficientTime-dependent parametersDynamic time delay of parameters $K = K_0 \beta \left(\frac{P}{1 \text{ GV}}\right)^{\delta}$ $K_0(t), \, \delta(t), \, \varepsilon(t)$ $\tau(t) = \tau_{\rm M} + \tau_{\rm A} \cos\left(\frac{2\pi}{T_0}(t - t_p)\right)$

Numerical approach (Crank-Nicolson scheme) LIS - model by A. Reina Conde V_{sw} - constant radial velocity of solar wind K - single power-law diffusion

 $V_a = \varepsilon V_{SW}$ - effective advection parameter

 K_0 , δ , ε are the parameters used to describe the flux at any given moment.

In order to relate the CR flux to solar activity, the relationship between these parameters and the **delayed number of sunspots** was studied.

Solar Modulation of Galactic CR's

1D equation with an effective advection

$$K\frac{\partial^2 f}{\partial r^2} + \left(\frac{2K}{r} - V_{\rm SW} - V_{\rm a}\right)\frac{\partial f}{\partial r} - \frac{2V_{\rm a}}{r}f + \frac{2V_{\rm SW}}{3r}\frac{\partial f}{\partial\ln p} = 0$$

Work presented in several conferences, article in last stages of preparation.

Diffusion coefficient $K = K_0 \beta \left(\frac{P}{1 \text{ GV}}\right)^{\delta}$

Time-dependent parameters

 $K_0(t), \, \delta(t), \, \varepsilon(t)$

Dynamic time delay of parameters

$$\tau(t) = \tau_{\rm M} + \tau_{\rm A} \cos\left(\frac{2\pi}{T_0}(t - t_p)\right)$$

Numerical approach (Crank-Nicolson scheme)

LIS - model by A. Reina Conde V_{sw} - constant radial velocity of solar wind **K** - single power-law diffusion $V_a = \varepsilon V_{SW}$ - effective advection parameter

 K_0 , δ , ε are the parameters used to describe the flux at any given moment.

In order to relate the CR flux to solar activity, the relationship between these parameters and the **delayed number of sunspots** was studied.

Time (year)

Modelling and Forecasting CR Flux

Parameters were estimated by fitting to AMS and ACE/CRIS Carbon fluxes, and PAMELA proton flux.

RICH Velocity: Time Variability

Beryllium Isotopic Analysis: Backgrounds

Existing measurements of Be isotope flux are both at low energy and have low precision.

Potential background from nearby nuclei (in charge): B, C, N, O

 Fragmentation taking place before the first measurement of charge (Tracker Layer 1)

Different detector regions for the analysis: TOF, RICH (NaF and Aerogel).

 $\frac{B}{B+S}$: background on Be selection is ~1.0-1.5%, coming from dominant channels, boron and carbon.

Background contribution is much higher in ¹⁰Be: ~15% at low energy down to 4% around 10 GeV/n.

A further reduction of background is envisaged by using the TRD detector alongside machine learning techniques.

Preliminary work

Be isotopic abundance

⁷ Be	⁹ Be	¹⁰ Be
50-60%	30-40%	10-15%

Radiation Risk at Low Earth Orbits

Dose due to cosmic radiation

$$H_{\mathrm{T,p}} = 4\pi \int_{0}^{\infty} \int_{0}^{\infty} \mathcal{P}_{\mathrm{Cutoff}}(E|\vec{r},t) Q_{\mathrm{p}}(E) \frac{D_{\mathrm{T,p}}}{\Phi_{p}}(E) \varphi_{\mathrm{p}}(E,t) \,\mathrm{d}E \,\mathrm{d}t$$

p-particle

Work presented in several conferences, article being written.

T - tissue

Kinetic Energy per nucleon [GeV/nuc]

Radiation Risk at Low Earth Orbits

Dose due to cosmic radiation

$$H_{\mathrm{T,p}} = 4\pi \int_{0}^{\infty} \int_{0}^{\infty} \mathcal{P}_{\mathrm{Cutoff}}(E|\vec{r},t) Q_{\mathrm{p}}(E) \frac{D_{\mathrm{T,p}}}{\Phi_{p}}(E) \varphi_{\mathrm{p}}(E,t) \,\mathrm{d}E \,\mathrm{d}t$$

p-particle
T-tissue

Work presented in several conferences, article being written.

Average Dose: 0.395661 Sv/Year

Total dose includes all nuclei from Hydrogen (Z=1) to Nickel (Z=28). Average Dose: 0.114641 Sv/Year (28.97% of deep space dose)

These studies are particularly relevant given the renewed interest in space travel.

STRENGTHS

- Experienced team in experimental, astroparticle and computational physics, with extensive computational and data science skills
- Long history of international relationships
 with other research groups
- Experience in developing extensive analysis frameworks

OPPORTUNITIES

- AMS remains a unique observatory in space
- Increased interest by the scientific community in Dark Matter origin and cosmic antimatter
- Time-variability of CR fluxes is an emerging topic in the scientific community
- AMS' high exposure time gives access to low abundance nuclei and antimatter fluxes due to the sheer amount of data
- Involvement in isotopic analysis benefits greatly from the group's RICH expertise

WEAKNESSES

The main weaknesses and threats are the relatively small size of the group and the lack of scientific overlap between the topics being researched by this group and other LIP research groups.

THREATS

GROUP UPDATES

Ongoing theses:

José Machado (BSc, IST-UL, ongoing) Guilherme Gaspar (MSc, IST-UL, ongoing) João Antunes (PhD, IST-UL & Shandong University & SDIAT)

Defended theses: Margherita Fioroni (University of Perugia)