Beam Monitoring System for Cyclotron Proton Beams at ICNAS

Sharif Ghithan, Francisco Alves, Rui Ferreira Marques, Francisco Fraga, and Paulo Crespo

Brainstorming meeting

Lisbon, 15 June 2012

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTICULAS

UNIVERSIDADE DE COIMBRA

1. ICNAS: Instituto de Ciências Nucleares Aplicadas à Saúde

For production of short-lived radioisotopes for medical use such as ¹⁵O and ¹⁸F widely applied in PET

Radiobiological and dosimetric studies!

Brainstorming meeting

2. Main application fields of 18 MeV proton beam

- 1. Beam energy
- 2. Beam current
- 3. Beam profile
- 4. Fluence
- 5. Dose and dose rate

- 1. Radiobiological experiments
- 2. Radiation hardness test of devices for spacecraft
- 3. Detector development
- 4. For nuclear physics studies
- 5. Among others

2. Main application fields of 18 MeV proton beam

*****Biological and medical technology

Flux density : 1×10⁹ ~ 1×10¹¹ protons/cm²-sec
Irradiation uniformity : > 80%

*****Space technology

Flux density : 1×10⁸ ~ 1×10¹⁰ protons/cm²-sec
Irradiation uniformity : > 90%

Material Science

Flux density : 1×10¹¹ ~ 1×10¹³ protons/cm²-sec
Irradiation uniformity : > 95%

Kim et al., 2006

3. Monte-Carlo validation

Geant4 version 9.3.p01, QGSP_BERT_HP physics package Pinto, MSc U. Coimbra

A proton beam with 18.5-MeV energy was shot in vacuum through a 25.2-µm-thick ⁹Be target

Verbinski and Burrus

3. Monte-Carlo validation

Remarkable agreement between Simulation and experimental data

4. Characterization of in-air beam divergence

4.1 Experiment at the PET cyclotron at ICNAS

4. Characterization of in-air beam divergence

4.1 Experiment at the PET cyclotron at ICNAS

The normalized beam profiles of the three films

Brainstorming meeting

4. Characterization of in-air beam divergence

4.2 Geant4 simulations

5. Neutron and γ-ray dose contribution

The dose contribution from neutrons and γ-rays is negligible down to at most the 1% level

Ten million protons were simulated. A beam current of 1.5 µA corresponds to a film dose rate of 1 kGy/s (plateau) and 3 kGy/s (Bragg peak)

Brainstorming meeting

5. Neutron and γ-ray dose contribution

Brainstorming meeting

5. Neutron and γ-ray dose contribution

6. Discussion and Conclusions

Target dose rates between 1 Gy/s and 100 Gy/s

Allows for decreasing target dose rates by a factor 10⁻⁴, from kGy/s down to Gy/s

Installing a simple mechanical shutter capable of 10 ms exposure timings allows to further bring down the dose on target to units of cGy

Brainstorming meeting

Beam Monitoring System

Lisbon, 15 June 2012 13/15

6. Discussion and Conclusions

7. On-going

THANK YOU FOR YOUR ATTENTION!

Brainstorming meeting