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3D Weyl Semimetals

In Weyl semimetals, the valence and conductance bands in the
energy spectrum touch each other at special nodal points, which
behave as magnetic monopoles in momentum space.

Weyl cones appear in materials that break either inversion
(k → −k) or time-reversal symmetry.



Abelian Berry Connection

Bloch wave-vector: |u(k)⟩ = (u1(k), u2(k), ..., uℵ(k))⊤.
The gauge redundancy in a non-degenerate Bloch state is encoded
in the arbitrary phase in |u⟩

|u⟩ → e iα(k)|u⟩,

where α(k) is a momentum-dependent function.
We can build an Abelian gauge connection in momentum space as
follows

Aj = i⟨u|∂j |u⟩, Aj → Aj − ∂jα,

with ∂j ≡ ∂kj , while the gauge-invariant Berry curvature is given by

Fjk = ∂jAk − ∂kAj .



Weyl fermions and momentum-space monopoles

Low-energy Weyl Hamiltonian (H. Weyl, 1929)

H3D = kxσ
x + kyσ

y + kzσ
z ,

where k = (kx , ky , kz) are the momenta and σx ,y ,z are the Pauli
matrices.

The Berry curvature around the Weyl point is given by

Fjk =ϵjkl
kl

2(k2x + k2y + k2z )
3/2

,

C =
1

2π

∫
S2

dk j ∧ dkkFjk = ±1,

which is the topological charge (first Chern number) of a
momentum-space Dirac monopole.



3D multifold topological semimetals

picture taken from T. Yang at al., Matter 7, 320 (2024)



Higher Chern number

picture taken from : I. Robredo et al, EPL 147, 46001 (2024)

It has been shown that these systems support quantum anomalies
although their effective field-theory description break Lorentz
symmetry.

Notice that these systems violate the Nielsen-Ninomiya theorem!



Real-space geometry

An effective curved background in Weyl semimetals can be induced
by introducing strain or linear dislocations and disclinations.

(Table from A. V. Grachev et al., The Gauge Theory of Point Defects, 1989).



From vacancies to non-metricity

Vacancies (point defects) in crystals give rise to an effective
non-metricity tensor Qijk in the continuum low-energy regime.

Qijk = ∇i g̃jk = Wi g̃jk .

In the absence of torsion (no linear dislocations), the non-metricity
is uniquely characterized by a vector field, known as Weyl
connection Wi (G. P., arXiv:2412.04743).



Momentum-space geometry: quantum metric

The Berry curvature is the imaginary part of the quantum
geometric tensor (Provost and Vallee, Comm. Math. Phys. 1980)

χjk =gjk + (i/2)Ωjk ,

where gjk is the quantum metric given by

gjk =
1

2
(⟨∂ju|∂ku⟩+ ⟨∂ku|∂ju⟩

− ⟨∂ju|u⟩⟨u|∂ku⟩ − ⟨∂ku|u⟩⟨u|∂ju⟩).

This is a Riemannian metric and quantifies, for instance, the
infinitesimal distance between two quantum states (it is also
known as Fubini-Study and Bures metric).

Importantly, this gauge invariant quantity can me measured in
experiments.



Topological charge from the quantum metric

Ωjk = ϵjk (2
√
ḡ),

where ḡ=det gj̄ k̄ is the determinant of the 2× 2 quantum metric
tensor defined in the proper 2D subspace.

In spherical coordinates:

gθθ = 1/4, gϕϕ = sin2 θ/4, gθϕ = 0.

This corresponds to the metric of a sphere S2, of fixed radius
r=1/2.

Q =
1

2π

∫
S2

Ω =
1

2π

∫∫
(2
√
g) dθdϕ = 1.

(G. Palumbo and N. Goldman, PRL 2018)



3D Geometric semimetals

We consider a class of inversion and time-reversal-symmetric
(T 2 = 1) multifold semimetals characterized by real Bloch bands
(zero Berry curvature), with the nodal points protected by
sublattice and rotation symmetries.

These systems are characterized by the quantum metric trace

Tr gk =
sα(sα + 1)

|k|2
,

where sα is the pseudo-spin.



Simplest example of geometric semimetal

For a suitable tight-binding model, we can linearize around the
Weyl-like nodal points, which are described by the following
momentum-space Hamiltonian

H(0,1)
k =

1√
2


−kz

√
2 kx ky 0

kx 0 0 kx
ky 0 0 ky
0 kx ky kz

√
2

 = kiβ
i .

E
(1)
± = ±

√
k2x + k2y + k2z , E

(2)
0 = 0.

The geometric invariant is given by

G =
1

2π

∮
dSk · k̂Tr gk = sα(sα + 1) = 2.

It can be simulated in synthetic matter systems such as ultracold
atoms, superconducting quantum circuits and metamaterials.



Kane fermions in quantum materials

Massless Kane fermions are been experimentally observed in
zinc-blende crystal (M. Orlita et al., Nat. Phys. 10, 233 (2014)).

All the three bands are doubly degenerated (doubly degenerate
spin-1 quasiparticle).
Massless Kane fermions respect time-reversal symmetry but are
topologically trivial. Moreover, the corresponding quantum metric
trace is not quantized.



Conclusions and Outlook

▶ I have briefly discussed the role of the quantum metric in
nodal-point semimetals.

▶ I have shown the existence of nodal-point semimetals that
although topologically trivial, are nevertheless characterized by
a quantized number related to the quantum metric trace.

▶ It would be important to show the absence of quantum
anomalies in these systems by employing non-relativistic
quantum field theory.

▶ It would be interesting to study the real-space geometry in
these systems and build a more general phase-space geometric
formalism (bi-metric phase-space theory).
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