Condensed Matter Axion Modes: Experimental Status & Future Work

Weyl and Dirac Semimetals as a Laboratory for High-Energy Physics Workshop

Olivia Liebman 26 June 2025

Topological materials which host axion physics

Topological insulators

Characterized by insulating in the bulk, with conducting *surface states*

$$H_{TI}(\boldsymbol{k}) = \hbar v_F \boldsymbol{\sigma} \cdot \boldsymbol{k}$$

Quantized / static background axion $\theta_0 = \pi$

nodes) and Fermi surface states arcs i.e. chiral surface states

$$H_{Weyl}(\boldsymbol{k}) = b_0 \pm v\boldsymbol{\sigma} \cdot (\boldsymbol{k} - \boldsymbol{b})$$

Background axion $\theta_0(\mathbf{r}, t) = \mathbf{b} \cdot \mathbf{r} - b_0 t$

Axion as a framework for topological magnetoelectrics

Axion term modifies how electric and magnetic fields couple, leading to modified form of Maxwell's equations

 θ : topological magnetoelectri

Unusual transport properties in topological materials:

Compactly described by axion framework

- Anomalous Hall currents ($\nabla \theta$)
- Chiral magnetic effect $(\partial_t \theta)$
- Signature of axion is magnetoelectric response $P \propto \theta B, M \propto \theta E$

ic coupling
$$S_{\theta} = \int d^3 r dt \frac{\theta(\mathbf{r}, t)e^2}{4\pi^2 \hbar c} \mathbf{E} \cdot \mathbf{B}$$

Nenno et. al., Nat. Rev. Phys. (2020)

Topological materials which host *dynamical* **axion quasiparticles**

Topological insulators

topological insulators

Dynamical axion $\delta\theta$ - topological insulators with AFM ordering

 $\delta\theta$ = collective spin wave excitations of AFM OP

e.g. MnBi₂Te4

 $\theta(\vec{r},t) = \theta_0 + \delta\theta$

Charge density wave Weyl semimetals

Dynamical axion $\delta\theta$ - arises due to strong correlations in the bulk

Weyl semimetal with charge density wave order, $\delta\theta =$ phason of CDW

e. g. $(TaSe_4)_2I$

arc
arc

Condensed matter axion

$$\mathcal{L}_{\theta} = \frac{e^2}{4\pi^2\hbar} \theta(\mathbf{r}, t) \mathbf{E} \cdot \mathbf{B} \longrightarrow J_{\theta} = \frac{\alpha}{\pi} \nabla \theta \times \mathbf{E} + \frac{\alpha}{\pi} \partial_t \theta \mathbf{B}$$
...dynamical axion con

θ(

Why call these collective modes "axions"?

- CDW phason in WSM / AFM spin wave in TI
 - Pseudoscalar
 - CP-violating
 - Couples to $\overrightarrow{E} \cdot \overrightarrow{B}$

Axion-modified Maxwell's equations

$$abla \cdot \mathbf{E} =
ho - rac{e^2}{4\pi^2 \hbar c}
abla heta \cdot \mathbf{B}$$

$$abla imes {f B} - rac{1}{c^2} \partial_t {f E} = {f J} + rac{e^2}{4\pi^2 \hbar c} \left(
abla heta imes {f E} + \partial_t heta \, {f B}
ight)$$

ntribution

$$(\vec{r}, t) = \theta_0(\vec{r}) + \delta\theta(\vec{r}, t)$$

Experimental status: 1. Dynamical axion detection in charge density wave Weyl semimetal (TaSe₄)₂I 2. Observation of the axion quasiparticle in 2D MnBi₂Te₄

...and experimental proposals for future work

Dynamical axion detection in charge density wave Weyl semimetal (TaSe₄)₂I

J. Gooth, B. Bradlyn, S. Honnali, C. Schindler, N. Kumar, J. Noky, Y. Qi, C. Shekhar, Y. Sun, Z. Wang, B. A. Bernevig, & C. Felser Nature 575, 315–319 (2019). doi:10.1038/s41586-019-1630-4

CDW formation leads to gapping out of Weyl cones

Evidence for axionic phason in (TaSe₄)₂I

 $\boldsymbol{J}_{\theta} \propto \partial_t \boldsymbol{\theta} \boldsymbol{B}$

Gooth, et al. Nature 575, pages 315–319 (2019)

Nonlinear transport: dI/dV increases nonlinearly only when $B \mid \mid I$

Angular dependence of axial current

Key findings from Gooth et al:

- Large negative magnetoconductance only when $\vec{B} \mid \vec{I}$
- Directionally dependent nonlinear magnetotransport behavior under varying B-field configurations

Note: axion is inferred from transport measurements, not directly observed via $J_{\theta} \propto \partial_t \theta B$

Reasonable fit with $\cos 2\varphi$ with axial current peaks at $\varphi \rightarrow 0^{\circ}$, 180°

3. Match with axion theory predictions: thermal activation indicative of a CDW gap (gapping of Weyl nodes) i.e. chiral symmetry breaking

Does (TaSe₄)₂I really harbor an axionic charge density wave?

A.A. Sinchenko, R. Ballou, J.E. Lorenzo, Th. Grenet, P. Monceau Appl. Phys. Lett. 7 February 2022; 120 (6): 063102. doi:10.1063/5.0080380

More work is needed for unambiguous detection...

Cohn, et al. Jetp Lett. 112 (2020) also attempted to recreate Gooth results but could not \rightarrow no negative longitudinal magnetoresistance like Gooth paper claimed

Gooth data:

- Magneto-conductivity data from [Gooth, et al. Nature 575, 315–319 (2019)]
 - Large, positive magnetoconductance only for $E \mid B$ and above threshold current
 - Also, only included data for a single temperature = 80K
 - Under very high voltage, which induces a large Joule power dissipation

Possible explanation for discrepancy?

- Joule power dissipation: strong heating creates strong thermal inhomogeneities
 - Thermal gradient with corresponding thermoelectric current
 - Gives no Lorentz force to thermo-electrons, but leads to additional scattering + heating
- **Possible hot filaments** with cores having properties of normal state.
- Anisotropic conductance from filaments

Qiu, Jian-Xiang et al. Nature vol. 641,8061 (2025): 62-69. doi:10.1038/s41586-025-08862-x

Observation of the axion quasiparticle in 2D $MnBi_2Te_4$

Nature vol. 641,8061 (2025): 62-69. doi:10.1038/s41586-025-08862-x

Jian-Xiang Qiu¹, Barun Ghosh^{2,3,4}, Jan Schütte-Engel^{5,6}, Tiema Qian⁷, Michael Smith⁸, Yueh-Ting Yao⁹, Junyeong Ahn¹⁰, Yu-Fei Liu^{1,10}, Anyuan Gao¹, Christian Tzschaschel^{1,11}, Houchen Li¹, Ioannis Petrides¹², Damien Bérubé¹, Thao Dinh^{1,10}, Tianye Huang¹, Olivia Liebman^{12,13}, Emily M. Been¹², Joanna M. Blawat¹⁴, Kenji Watanabe¹⁵, Takashi Taniguchi¹⁵, Kin Chung Fong^{2,3,16}, Hsin Lin¹⁷, Peter P. Orth^{18,19,20}, Prineha Narang^{12,21}, Claudia Felser²², Tay-Rong Chang^{9,23,24}, Ross McDonald¹⁴, Robert J. McQueeney^{18,19}, Arun Bansil^{2,3}, Ivar Martin⁸, Ni Ni⁷, Qiong Ma^{25,26}, David J. E. Marsh²⁷, Ashvin Vishwanath¹⁰ & Su-Yang Xu^{1 \square}

• Direct observation of dynamical axion

• Coherent oscillation of the out-of-phase

AFM magnon mode i.e. θ -field ~44 GHz

2D, 6-layer MnBi₂Te₄

Time-resolve Kerr for dynamical axion detection

Pump: Triggers coherent magnetic excitations (AFM magnons) in the sample.

Probe: Arrives after a controlled delay t, and detects how the sample's magnetoelectric properties $\alpha(t)$ evolve over time.

 dM_z $\alpha =$ dE_z

$$ig| heta_{
m Kerr} = rac{1}{\gamma} M_z = rac{lpha}{\gamma} E_z$$

temperature dependence of α ; vanishes at Néel temperature

Magnetoelectric coupling

Axion field

Observation of DAQ in 2D MnBi₂Te₄

Qiu, Jian-Xiang et al. *Nature* vol. 641,8061 (2025): 62-69. doi:10.1038/s41586-025-08862-x

Key result: change in magnetoelectric coupling as a function, $\Delta \alpha(t)$, of time, induced by the pump

Future work: generic optical protocol for detection

- Definitive dynamical axion detection in a Weyl CDW material is needed
- Theoretical proposal for dynamical axion detection for a generic axion insulator system:

Response of dynamical axion $\delta\theta$ *to application of external EM fields*

$$\delta\theta(q) = \frac{(\alpha/\pi\kappa)\omega_1\omega_2\mathcal{A}_1\mathcal{A}_2}{\Omega^2 + i\Omega\gamma - \Omega_0^2} \left(\frac{\mathbf{q}_1}{\omega_1} - \frac{\mathbf{q}_2}{\omega_2}\right) \cdot \left(\hat{\boldsymbol{\varepsilon}}_1 \times \hat{\boldsymbol{\varepsilon}}_2\right)$$

Intensity of axion response depends on:

- Frequency
- Momenta
- Polarization
- Angle of incident beams

Linearize for small $\delta\theta$

$$R_{\pm} = \pm \frac{1 - \left(n_{\pm} \mp i \frac{\alpha}{\pi} \delta\theta\right)}{1 + \left(n_{\pm} \mp i \frac{\alpha}{\pi} \delta\theta\right)} = |R_{\pm}|e^{i\Delta_{\pm}}$$
$$\Theta_{K} = -\frac{1}{2}(\Delta_{+} - \Delta_{-}) \approx \frac{\alpha}{\pi} \frac{(-2 + n_{+}^{2} + n_{-}^{2})}{(n_{+}^{2} - 1)(n_{-}^{2} - 1)} \delta\theta.$$

$$\frac{1}{2}(\Delta^+ - \Delta^-)$$

Polar Kerr ellipticity

 $\searrow \eta_K = \frac{R_+ - R_-}{R_+ + R_-}$

Order of magnitude estimate for $(TaSe_4)_2I$

expected modulation in Kerr angle $\Theta_K \approx 1.5 \mu rads$

This work is entirely supported by the Quantum Science Center (QSC), a National Quantum Information Science Research Center of the U.S. Department of Energy (DOE)

Thank you!

