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Basics of the quantum Hall effect and Wigner-Weyl
calculus



The Hall conductivity

The quantum Hall effect in (24+1)D

2 Magnetic field B

2D sample

Electric field £

Current [

N

non-dissipative, topological response function: Hall conductivity I, = 0., E,, 04 = %1/

integer/fractional quantum Hall effect (IQHE/FQHE): v is an integer/fraction



visualization: topological quantum Hall plateaus AB in the (py,-B)—plane

— Landau level quantization of electrons in an external magnetic field

resistivity matrix p = (pxx pxy> , Pxx = Pyy (rotationally invariant sample)
Pyx  Pyy
.. . 1 Pxx —Pxy
conductivity matrix o = p Oxx =0y = —5———5—, Oxy = —5———o—
’ Pix t 03y P+ 3y
on a Hall plateau: py, = —pyx = e—hZ% Px =Py =0 = 0x=0, 0y =

Pxy

h .

=5: von Klitzing constant, can be measured very precisely
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Landau level quantization in an external magnetic field:

Landau Level Occupation: IQHE vs. FQHE

Lowest Level Fully Occupied (IQHE v=1) Lowest Level One-Third Filled (FQHE v=§

e Particles e Particles

~

-

Landau Level Index n

o)

me

IQHE: gapped ground state due to Landau level energy gap (we =
FQHE: gapped (!) due to strongly correlated electrons (V/(/g) = %, Ig ~ %)



Feature Integer Quantum Hall Fractional Quantum Hall
Effect (IQHE) Effect (FQHE)
Discovered 1980 (Klaus von Klitzing) 1982 (Tsui, Stormer, Gossard)

Hall Conductance

Oy =ve?/h, VEL

Opy =ve?fh, v=p/q, p,qEL

Theory Non-interacting band theory Strongly correlated field theory
(e.g., composite fermions)
Origin Non-interacting electrons in Strong electron-electron

Landau levels, scale:
w, =eB/m,

interactions, scale:

V(lg) = e%/lg, Ip ~ 1/VE

Topological Invariant

Chern number (integer) for
electrons (fully filled Landau
levels)

Chern number (integer) for
composite fermions (fully filled
effective Landau levels)

Quasiparticles

Electrons (fermions)

Anyons with fractional charge
and statistics

Ground State Degeneracy

Unique (on torus)

Topologically degenerate

Wavefunction

Slater determinant of Landau
level states

Launghlin wavefunction (e.g.,
for v = 1),...

Edge States

Integer number of chiral modes

Chiral edge states with
fractional excitations

Disorder Robustness

Very robust (mobility gap)

Robust but requires
ultra-clean samples

Experimental Requirements

High magnetic field, low
temperature

Higher field, cleaner samples,
lanr mmpnrarnros




Wigner-Weyl formalism (in (2 + 1) dimensions, e = i = 1)

Weyl symbol of an operator:

3]
™

configuration space representation'

(xOly) = s | Low L e

=O0w(R, p) = /d3yO(R+ %,R— Lyeio

momentum space representation'
+ k

(p|Ok) =0(p, k 5 el

xOw(x

k .
=Ow(R, p) = /d3k0(p +5.p- 5)e'kR



on Hilbert space: operator product operation O =AB; on phase space:

Ow(x.p) = Aw(x,p) » Bu(x. )+ =exp(5 ({85, - @u@:)") )

Groenewold equation of the Weyl symbol of an operator O:

A A

Ow(x,p)* Oyt (x,p) =1 (O=Q=w—-H,6=Q7"
propagator matrix elements (time translation invariant):
G(Xa y,UJ) = <X|(w - l:l)_1|y>? C(paqaw) = <p|(w - I:I)‘q>

Feynman (or time ordered), Matsubara (or imaginary time ordered) Green functions

Gly (%, p,w) = Gw(x, p,w + i07sign(w)) / GF(x.y) = =i{(x)d(y))p

GlY(x, P, wn) = —iGw(x, B, iwn) | GM(x,y) = (W()F())pr (wn= 2+ )T ne2)



The quantum Hall fluid: Non-perturbative fractional
topological phases



QFT for electrons with Coulomb interactions in Minkowski spacetime

Z= / DyDPDASNT [ dxPQDI, gy — % / dzd®\2)V (2,2 )\(2),

Q[N = ido — Ao(2) + 1 — Mz) + %02, D=3a+iA

the electric current:
jk(X)_lélogZ 142
0AK Z 0AK

at zeroth order of perturbation theory (A = 0):

jk(X) = i/ (Zj_;gTr[Gw(X,p)apk Qw(X,p)}

—5 [ DUDIOASI FER ) QNu ()

full inclusion of perturbative interactions (Qw = Qw — Xw, Gw = Qa/l):

#60 =1 | 251Gt 0 Qux.p)]



Topological vs. physical current for the interaction a = 0, Yukawa, QED

topological current (in Euclidean space):

d3 0
Sopal0) = = [ 5 TP [(Gawlx,p) - 5o (Qahwx p)]

=% 1
Jtop,a = @ / d3XJ§a(X)7 Tk

physical current (in Euclidean space):
d*p 0
k —
S0 = = [ G TG p) - 5 (Qo)wixp)]
JE= ﬂlp/d3xJ§(x), S x

inverse Dyson equation: (Q,)w = (Qo)w — (Xa)w with self-energy (X,)w

. .. —k
perturbative non-renormalization theorem: J
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The composite fermion QFT model of Lopez and Fradkin

7 / DlpD@DADANeiSCS[AHiS[)‘Hifd3X¥O[A’)‘]w

S =5 [ XAV AN, Sesldl = § [ dxe 4,

QLA AL = 80 — Ao(x) — Ao(x) + 11— A(x) + %DQ, D = 9+ iA(x) + iA()

0 =1/(2m 2s), s € Z to trivialize linking number contributions

mean field approximation: external electromagnetic fields are screened by the statistical
electromagnetic field, maps FQHE to the IQHE

homogeneous mean field solution of the field equations

L - - —(—i)D*
08=—p, 66 =, A=0, p= @), 7= (G224
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Screening and fractional quantization at the mean field level

assume p Landau levels are occupied for Beg (principal Jain series)

_p 5 5
P = 5 Deff: eff + 0 SpBefrf < Befr T+ 29
3 P -
J= 5 Eer: eff + i/ pEer & Eor = 150

7 P 1 p 1 p

= op ke = oo E & og=o" T~

= b = 595t @ v T 1 1as (1 0)
= 5 A Qefr)w(x, p)
p=N = zA/dpdxem,pTr[(Geff) (x,p) » Au:2)

Q X, a(Q x.
*(Geff)W(Xyp)*M*(Geﬁ)w(x,p)*w]
apu 8pp

minimal fractional charge of quasiparticles/holes: ey, /, = +e(l+2sp)~t
12



Relativistic field theory in macroscopic motion: The
Zubarev statistical operator



Zubarev statistical operator method

relativistically covariant formulation of the statistical operator

= assumption 1: spacetime possesses foliation into a family of spacelike
hypersurfaces X, parametrized by "time” o with normal vector field n

= assumption 2: continuous medium (hydrodynamical) approximation is valid
= assumption 3: local thermalization timescale AT <« At with At a characteristic
time scale of interest (LTE)

= assumption 4: global thermalization of the physical system of interest (GTE)

the Zubarev statistical operator is constructed from conserved current densities which

characterize the system macroscopically

13



statistical operator from the maximum entropy principle with constraints:
() Tr(pTH (x)) = 1, (x) Tl (%), 1 () Tr(A7* (%)) = 1 (x)fin(x)

under Poincaré symmetry: TH" = Tg;/Té‘” or TH = Tka, plus MEY

pure = 5 —ew(~ [ dEan (P (08, = ()

LTE P
Tr(prre) = 1, timelike 8, = Bu,, v,u” =1, (=P
nu(X) Ti7elB, € nl(x) = nu(x) Téy (%), nu(x)jirelB, ¢ n(x) = nu(x)jkn(x)

T{7elB: ¢ nl(x) = Tr(pre T (), ji7elB. ¢ nl(x) = Tr(peref™(x))



Quantum electrodynamics under macroscopic motion in GTE

macroscopic motion Hamiltonian:

e~ [ dEBHmn). o = () (T(R)8,(2) - (R0()

— we converted this Hamiltonian into a Lagrangian via path integral methods

PGTE =

Dirac Lagrangian + gauge field Lagrangian:
— . I Pae 1 ,
£ M) = 90) (57D = m) () = G Fou

> — —
Dy = 8l = 18, Fyw = Gy = @hpdlyyy 1Dy = 1Dy = D)y
Dirac field and gauge field BR energy momentum tensors:

T (x) = 7900 (D" + ¥ D))

T (x) = FPGF () + 78" (0 Fao )PP ()
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GTE condition:

dp A TV, -V v
dig =0, logp=—log(Z) — /dzaﬁn“g,w ((Twp + TXP)u, — Z,u,-j,- )

1

= 0=0,(T"Bu, — Y 3t Bui) = T70,8u, = > J¢ 0, Bu

(employ Stokes' theorem + operators vanish at spacelike infinity, currents are
conserved)

solution (uniform linear motion, rotation and accelerated motion at finite density):

g
Bui = ¢; = const., B, = Bu, = by +wpsx?, by, wps =const., wye = —wWgp
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Macroscopic motion under full Poincaré symmetry

(translations, rotations, boosts)

Permissible types of macroscopic motion in global thermodynamic equilibrium

Uniform velocity Rotation with constant angular velocity Uniform acceleration
> = — —
- - — —
- - — — —
- — — —
- — — —
- — — —
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More on the path integral formulation

Z[n(x), u(x), B(x), pi(x), h] = / DYDPDA, & J dx L@b )

B(to, X)

B(X) /B(tO’_f?)u(to,?), Yo, — Yo (h) = {(MB(X),%)|X € £}

u(X) i W 18

u(to, )?), u()_(‘) =



Final effective Lagrangian comprising macroscopic motion

£ 2) = (1# 500 = ) + 3w

4 (2 (517 41(D; + Dj) - ka)zp)
e o)
+ %( B'B' — (BjW)(BAY')) — e EiBju*

. - - oy Uk(to, X) o M(to,X)
ES T 0 t (£ _ —— ¢ —
B(X) = B(to, X)u"(to, X) & U(X) Ot )’ () oW
1 .
Ei = Fun*, Bj= —Eeu;ijJkn“
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The quantum Hall fluid in macroscopic motion



Relativistic extension of the model by Lopez and Fradkin

7= / DwDTZJDAMDAMeiSCS[A]+ng[)\]+ifd3X1Z©[A’A7)\]¢

S = —4—22 / d4x(6[M(A + )\)V])2 +/d4X£gf[A + 2], Scs= Z/d3xeijkAi]_—jk
Dirac operator in the laboratory frame:
Qéﬁc = 790 — (As — Ex) + prery® — YA+ ’yk(i(?k + Bxyy — Ak) — Myl
boosted Dirac operator in the Hall fluid frame (|v| < 1):

Qb = i7°8; + prre® + A (iak - BeffX)A/k> — Mgl
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The Zubarev statistical operator for the Hall fluid in GTE

1

- f): d4x5n“(T,wu”—/lJu)’ Hmm — n'u(T,ul/UV o Wu)

ZYU] = /DwDQZD)\MDA#eiscs[A]Hfd3xcf($,w,A,,\,A,u)+ifd4xcg(A,A,A,u)

— _ i< — 5 i - i <—>k
LB, 0, AN AL = B(v 5D, — m)p + 83y (517, 441(D; + D) - 50%)9
1
2¢2
we assume constant external electric field E and magnetic field B (— no cross terms)

L. 1
Lo (AN A L) = (Ei +A)? - @(B + A)?

Ei=E —eiBW, Ni=N—eiAl, N=0pN;, N=—9;);/2
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gauge choice: U* = u*/u®, non-relativistic limit 1% ~ 1 = U* ~ u#
the state with nonzero electric field can not be stable due to pair production, unless

U =€VE;/B = ¢U€;/B = boost into the Hall fluid frame where E is zero

Laboratory frame vs. Hall fluid frame

Magnetie field B z
Electric field # L 2D sample (Hall fluid frame)
“lectric held L
— . « v Magnetic field 5
—
F_ Beyr =
Current J = gl = £ = K i=0,5= LBy,

2D sample (laboratory frame) hoost by LY / - ,)




Dirac composite fermions in the lowest Landau level

comparison with the (particle-hole symmetric) Dirac composite fermion lowest Landau
. . _ 1 )

level projected theory (relates states with v = 5 £ 0):

Dirac fermions are necessarily massless to ensure particle-hole symmetry

in addition there is no Landau level mixing, as w. = eB — oo for m — 0

2B 2 =y 5 0 kWYY 5 ipole term
1V,E— ~ g 00 1 = i
528 ¢¢=ﬂk¢70§[7’,7k](Dj+Dj)1/z (vorticity term)

more generally: ' = e”(EJ —0jA\0)/B, \j=0j¢ fix gauge for \,;: ¢ =0
the fermionic actions are identical, but the topological couplings are different
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Perturbative non-renormalization of the (fractional) Hall
conductivity



the non-renormalization of the current for E # 0 (laboratory frame) is reduced to the
non-renormalization of the density for E = 0 (Hall fluid frame)

T I(Qerr)w(x, p)
p= (27r)3A/d3pd3xTr{gW(x,p)*ffa:zp}

; T

p = (277)3/4 /d3pd3XTr{gW(X,p)* 0((Qeff)W8;3ZW)(X’p)}

DAp=p—p =0 under fluctuations of \ or Au

we show that A, can not renormalize oy, via path integral methods for 6 = 1/(27 2s)

the setup becomes spatially periodic and rotationally invariant in the Hall fluid frame



current/density self-energies

. . insertions
progenitor diagrams

(a) (b)

proof relates the perturbatively renormalized density contribution at each loop order to
a sum of so-called progenitor diagrams (Feynman diagrams without external density
insertion) supplemented by a total derivative operator inserted into the momentum
integral of a fermion loop identical to a loop momentum component (which therefore
vanishes identically)

symmetry factors present in the sum of progenitor diagrams are canceled exactly
(symmetry factors are absent after density insertions into the progenitor diagrams)
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Future research on the quantum Hall fluid

apply known techniques within the conductive response to viscoelastic responses:

= topological invariance of the Hall viscosity in theories with translational and
rotational invariance (both in integer and fractional quantum Hall phases)

= how are the topological invariants for the quantum Hall conductivity and the Hall
viscosity related to each other?

= how robust are the topological invariants relative to each other?
(inhomogeneities, anisotropy, disorder, finite temperature, time dependence...)
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Thank you for your attention and

interest!

This talk is based on:

“Non-renormalization of the fractional quantum Hall
conductivity by interactions.” arXiv:2502.04047
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