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Chirality in subatomic world: chiral 
fermions 

Fermions:

E. Fermi,1925

Dirac equation:

P. Dirac, 1928

Weyl fermions:

H. Weyl, 1929

Majorana fermions:

1937

E.Majorana, 1906-38?
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Chirality of gauge fields

Gauge fields can form chiral knots – 
for example, knots of magnetic flux in
magnetohydrodynamics (magnetic 
helicity), characterized by 
Chern-Simons number
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Chiral anomaly: chirality transfer from 
fermions to gauge fields (or vice versa)
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From: Y. Hirono, DK, Y. Yin,
PRD 92 (2015) 12
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Chirality in the vacuum of the Standard Model

The instanton and sphaleron solutions in non-Abelian gauge theories 
describe transitions between topological sectors of the vacuum 
marked by different integer values of the Chern-Simons number:

QCD (Quantum ChromoDynamics) vacuum: 
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Chirality and the origin of Matter-Antimatter
asymmetry in the Universe
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Sakharov conditions for baryogenesis:

1. Baryon number violation
2. C and CP symmetries violation
3. Interactions out of thermal equilibrium A.D. Sakharov, 1967
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Within the Standard Model, baryon number violating 
sphaleron transitions in hot electroweak plasma operate in 
the expanding Early Universe. 

Can we study these processes in the lab?

No – the temperature of electroweak 
phase transition is too high, 𝑇𝐸𝑊 ≈ 160 𝐺𝑒𝑉 ~ 1015 K

But: we can study analogous processes in another 
non-Abelian gauge theory of the Standard Model – QCD!

Chirality and the origin of Matter-Antimatter
asymmetry in the Universe
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Graphics: Hamada, Kikuchi,’20



The temperature of QCD phase transition is 1,000 times lower: 
𝑇𝑄𝐶𝐷 ≈ 160 𝑀𝑒𝑉 ~ 1012 K

QCD plasma can be produced and studied in the ongoing 
heavy ion experiments at RHIC (BNL) and LHC (CERN).

QCD sphalerons induce chirality violation 
(instead of baryon number violation), and 
rapid expansion of the produced plasma 
drives it out of thermal equilibrium –
thus we expect to see a substantial generation of 
net chirality, of fluctuating sign, in heavy ion collisions!

Generation of chirality in the QCD plasma
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Graphics: Hamada, Kikuchi,’20



Topological transitions in QCD vacuum

                                             D. Leinweber
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Chirality in the vacuum of the Standard Model

Topological chirality-changing transitions between the vacuum sectors
of QCD are responsible for the spontaneous chiral symmetry breaking
and thus most of the mass of visible Universe.  
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Is it possible to directly observe these 
chirality-changing transitions in experiment?
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A working group with STAR experimentalists was formed to 
find a way to detect this local parity violation (chirality imbalance):

J. Sandweiss, S. Voloshin, J. Thomas, E. Finch, A. Chikanian, R. Longacre, …

But after a few years of hard work it has become clear that the
proposed pion correlations are very difficult to detect. 

We addressed this problem in the 1998 paper with 
Rob Pisarski and Michel Tytgat:



Detecting the topological structure of QCD vacuum 

Topological transitions in the QCD plasma change chirality of quarks. 
However, quarks are confined into hadrons, and their chirality cannot 
be detected in heavy ion experiments. 

Therefore , to observe these chirality-changing transitions we 
have to find a way to convert chirality of quarks into something 
observable – perhaps, a (fluctuating)  electric dipole moment 
of the QCD plasma? This would require an external magnetic field or 
an angular momentum.
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hep-ph/0406125



This idea was developed further: 

Chiral Magnetic Effect (CME) 



Chiral anomaly

S. Adler ‘69

J. Bell, R. Jackiw ’69

The axial current is not conserved:

The chiral charge is not conserved;

a chirally imbalanced state of chiral fermions is not

a true ground state of the system!
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Chiral anomaly

In classical background 
fields (E and B), chiral 
anomaly induces an 
imbalance between 
left- and right-handed 
fermions;

chiral chemical 
potential:                     

Adler; Bell, Jackiw (1969);  Nielsen, Ninomiya (1983)
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Chiral Magnetic Effect
DK’04;  DK, A. Zhitnitsky ‘07; DK, L.McLerran, H.Warringa ’07;  K.Fukushima, DK, H.Warringa, 

“Chiral magnetic effect” PRD’08;      Review and list of refs: DK, arXiv:1312.3348 [Prog.Part.Nucl.Phys]

Chiral chemical potential is formally 
equivalent to a background chiral gauge field:

In this background, and in the presence   of B, 
vector e.m. current is generated:

Compute the current 
through

Coefficient is fixed by 
the chiral anomaly, no 
corrections

Absent in
Maxwell theory!

Chirally imbalanced system is a non-equilibrium state
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Chiral magnetic conductivity:
discrete symmetries
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P-even
T-odd

P-odd

P-odd
T-odd

P-odd effect!

T-even
Non-dissipative current!
(non-equilibrium)

cf Ohmic
conductivity:

T-odd,
dissipative

Effect persists in
hydrodynamics!

P – parity 
T – time reversal
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D.Son, P.Surowka ’09

DK, H.U.Yee ‘11



Chiral magnetic waves
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Chiral magnetic wave:
coupled oscillations of
electric and chiral charges
DK, H.U. Yee, ’10

Quantum simulation reveals
the existence of a novel 
nonlinear chiral magnetic
wave at large m/g

K. Ikeda, DK, S. Shi,
arXiv:2305.05685; PRD’23



CME in the Early Universe
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Bringing gravitational waves to light
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arXiv:2506.09459



Condensed matter analog:
CME induced by strain
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~ 1 μA

Phys.Rev.B 94 (2016) 24, 241405



“Numerical evidence for chiral magnetic effect 
in lattice gauge theory”,
P. Buividovich, M. Chernodub, E. Luschevskaya, M. Polikarpov,  аrXiv 0907.0494; PRD’09

Fluctuations of electric current along the direction of magnetic field are enhanced
22

M. Polikarpov 
  1952-2013



“Chiral magnetic effect in 2+1 flavor QCD+QED”,
M. Abramczyk, T. Blum, G. Petropoulos, R. Zhou, ArXiv 0911.1348, PRD

2+1 flavor Domain Wall Fermions, fixed topological sectors, 16^3 x 8 lattice

Red - positive charge
Blue - negative charge
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Can one detect QCD topological transitions 
in heavy ion collisions?

Relativistic Heavy Ion Collider 
(RHIC) at BNL

Charged hadron tracks in 
a Au-Au collision at RHIC
[STAR experiment]

The STAR Collaboration
at RHIC
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Heavy ion collisions as a source of the strongest magnetic 
fields available in the Laboratory

DK, McLerran, Warringa, 
Nucl Phys A803(2008)227
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Heavy ion collisions: the strongest magnetic 

field ever achieved in the laboratory
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excess of positive
charge

excess of negative
charge

Electric dipole moment due to chiral imbalance

DK, hep-ph/0406125; Phys.Lett.B633(2006)260

CME as a probe of topological transitions 
and chiral symmetry restoration in QCD plasma

The problem: 
fluctuating sign, reflecting
topological fluctuations in QCD
- backgrounds!
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CME as a probe of topological transitions 
and Event-by-event parity violation in QCD plasma
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Global Parity violation
in Weak interactions

Local, Event-by-event Parity violation
in Strong Interactions ?

+

-
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Separating the signal from background: the beginning

Measure the difference of charged hadron fluctuations
along and perpendicular to magnetic field

(direction of 𝐵 is defined by the reaction plane)



Review of CME with heavy ions: DK, J. Liao, S. Voloshin, G. Wang, Rep. Prog. Phys.’16

Review + Compilation of the current data: DK, J. Liao, Nature Reviews (Phys.) 3 (2021) 55
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Very recent news:
STAR result on CME 
in beam energy scan
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arXiv:2506.00275
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arXiv:2506.00275



Why CME at low energies?
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One reason is the longer-living magnetic field:

H. Li et al,

arXiv:

2306.02829

PRC(2024)



Why CME at low energies?
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But there may also be another reason, revealed through 
the real-time simulations: enhancement of topological fluctuations
near the critical point

Also: K.Fukushima, M. Ruggieri, R. Gatto (2010)



Better CME observables 
with machine learning
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Up to 90% higher sensitivity
to CME signal than “standard”
observables 

arXiv: 2504.03248

https://arxiv.org/abs/2504.03248


CME in Dirac & Weyl semimetals
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Recent reviews:

N.P. Ong and S. Liang, Nature Rev. Phys. (2021); P. Narang, C. Garcia, C. Felser, Nature Mat. (2021) 

Even number of space-time dimensions –
so chiral anomaly operates, can study CME!



CME in chiral materials 
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BNL - Stony Brook - Princeton - Berkeley

arXiv:1412.6543 [cond-mat.str-el] 

Nature Phys.
12 (2016) 550
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Q. Li et al,
Nature Physics 12, 550 (2016)
arXiv:1412.6543
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Parallel electric and magnetic fields source the chiral anomaly:

and thus the chiral chemical potential μ5 ~ ΕΒ τ

The CME current is J ~ μ5 B
2 τ – longitudinal magnetoconductivity ~ B2 (at weak B) 

D. Son, B. Spivak ‘13



CME in chiral materials 
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Impressive results from other groups: arXiv:1503.08179

Science ‘15



CME in chiral materials:
optical measurements 
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Chiral magnetic instability 

JB Transfer of 

chiral charge

of the fermions

to the magnetic

helicity
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arXiv:1002.1473



Inverse cascade of magnetic helicity
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Instability at k<          leads

to the growth

of magnetic

helicity

Inverse cascade:

Increase of

of magnetic

helicity reduces 

M.Joyce and M.Shaposhnikov, PRL 79 (1997) 1193;

R.Jackiw and S.Pi, PRD 61 (2000) 105015; 

A.Boyarsky, J.Frohlich, O.Ruchayskiy, PRL 108 (2012) 031301; 

PRD 92 (2015) 043004; 

H.Tashiro, T.Vachaspati, A.Vilenkin, PRD 86 (2012) 105033



Self-similar inverse cascade of 

magnetic helicity driven by CME

Y. Hirono, DK, Y.Yin, PRD’15

N. Yamamoto, PRD’16

Possible link between “helical magnetogenesis”

and baryogenesis in Early Universe:  

DK, E.Shuryak, I.Zahed, arXiv:1906.0480, PRD

helical magnetogenesis

in the Universe?

Work by A. Brandenburg, T. Vachaspati, 

A. Boyarsky, O. Ruchaysky, T. Kaniashvili,…
 



Can chiral magnetic instability
be observed in chiral materials? 
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PRD (2015)



Chiral magnetic instability 
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arXiv:2502.05170

Sinusoids with 

amplitudes 

growing in time



Summary

The interplay of chirality and quantum anomalies is fascinating.

Many novel phenomena to be explored at the current and future
experimental facilities (RHIC, LHC, EIC).

Dirac and Weyl semimetals enable tabletop experiments, with results 
that are fundamentally interesting and potentially important for 
applications (qubits, sensing, transducers, …) 
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