

04 July 2025

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS partículas e tecnologia

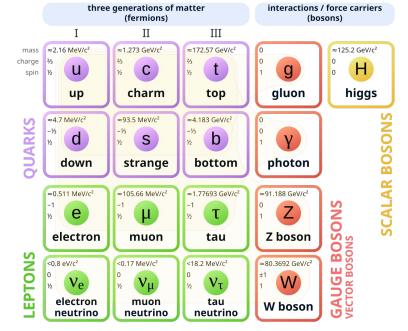
Search for charged Higgs bosons produced in vector boson fusion processes and decaying into vector boson pairs in proton-proton collisions at $\sqrt{s} = 13$ TeV

https://arxiv.org/abs/2104.04762

Contents

1. Introduction

- 2. Signals & backgrounds simulation
- 3. CMS detector
- 4. Events reconstructions & selection
- 5. Background estimation
- 6. Signal extraction
- 7. Systematic uncertainties
- 8. Results
- 9. Conclusion


Introduction

- Higgs bosons was introduced in 1964 by P. HIGGS, F. ENGLERT, R. BROUT to enable electroweak symmetry breaking, providing mass to the W and Z bosons and to fermions
- In 2012 the Higgs bosons was discovered by the ATLAS and CMS experiments at the Large Hadron Collider (LHC)
- Completed the particle content of the Standard Model

Standard Model of Elementary Particles

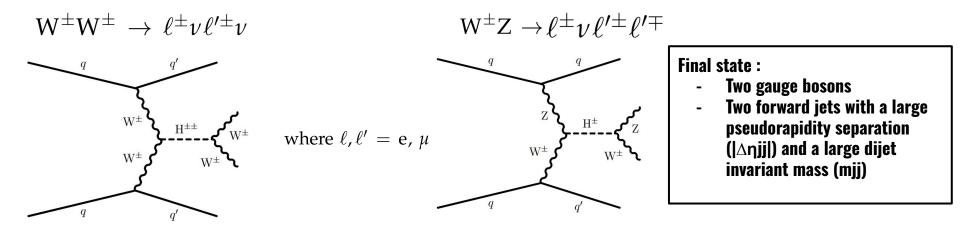
Raphaël GUITTON

Issues with the standard model

The Standard Model is a successful theory that accurately describes many phenomena, yet it still has limitations and unresolved questions.

- Why do neutrinos have mass?
- What is dark matter?
- Why there is a matter-antimatter asymmetry ?
- Why is the expansion of the universe accelerating?
- Is there a boson associated with the gravity force ?

Beyond standard model theory


- SuperSymmetry principle
 - **The Georgi–Machacek (GM) model** extends the Higgs sector by introducing scalar triplets, which predict additional Higgs bosons:
 - singly charged (H±) and doubly charged (H±±) called H5 that decay to boson exclusively.
 - Additional charged Higgs bosons H± predicted in the GM model only have fermonic decay and are not considered in this study
- A good way to look at this windows is through **VBS study**
 - VBF directly probes the coupling between vector bosons (W/Z) and scalars.
 - Charged Higgs bosons in the GM model can into boson pairs making VBF the ideal channel to study them.
 - H±→W±Z
 - H±±→₩±₩±

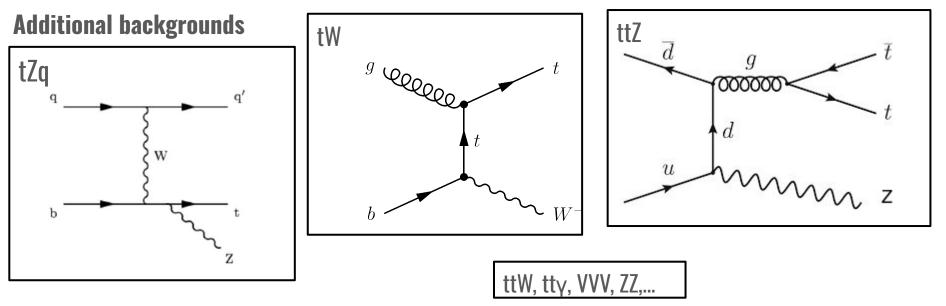

Candidate events contain either two identified leptons of the same charge or three identified charged leptons with the total charge of ±1, moderate missing transverse momentum (pmiss T), and two jets with large values of $|\Delta \eta jj|$ and mjj

The signal is simulated using MADGRAPH5 aMC@NLO 2.4.2 at leading order (LO) accuracy. The predicted signal cross sections are taken at next-to-next-to-LO (NNLO) accuracy from the GM model

Backgrounds

generator with at least one QCD vertex at tree level.

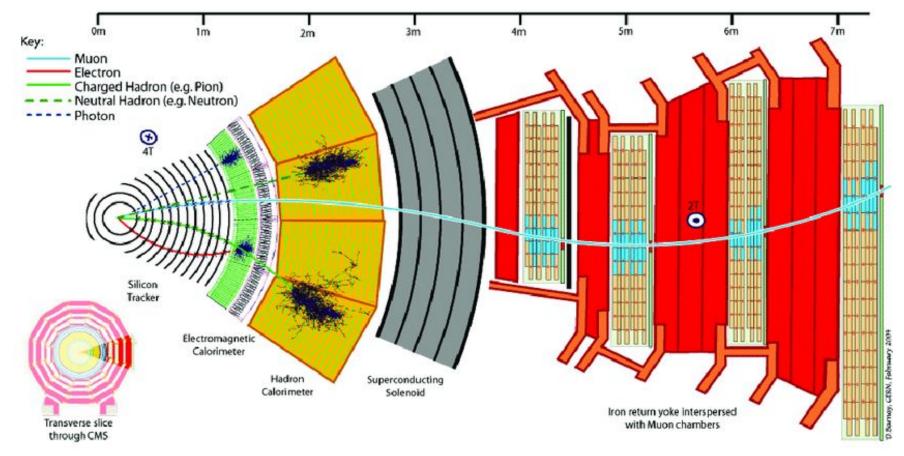
The interference between the EW and QCD diagrams is also accounted for with MADGRAPH5 aMC@NLO.


Raphaël GUITTON

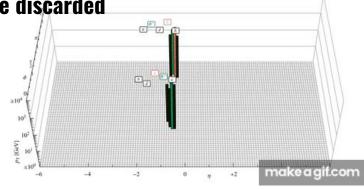
accuracy with four EW and two QCD vertices.

7

Backgrounds



- tt, tW, ZZ : POWHEG generator
- tZq, ttW, ttZ, tt $_{\mbox{\scriptsize Y}}$ and VVV : MADGRAPH5 at NLO accuracy in QCD


CMS detector

- Particle-flow (PF) algorithm :
 - Combine information from the tracker, calorimeters, and muon systems
 - Reconstruct and identify charged and neutral hadrons, photons, muons, and electrons.
- Jets are reconstructed by clustering PF candidates using the anti-kT algorithm
 - Jet energy corrections are derived from simulation studies so that the average measured energy of jets becomes identical to that of particle level jets.
 - \circ Jets with transverse momentum pT > 30 GeV and $|\eta| < 4.7$ are included in the analysis.
- Tracks identified to be originating from pileup vertices are discarded

• Trigger Strategy

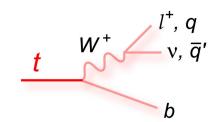
• Use single-lepton triggers (e/mu) and dilepton triggers with lower thresholds to maximize efficiency (>99%).

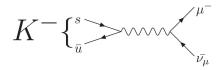
• Lepton selection

- Require isolated electrons/muons to reduce contamination from nonprompt leptons.
- Leading lepton pT thresholds:
 - Electrons: > 27 GeV (trigger)
 - Muons: > 24 GeV (trigger)

• b jet and Tau Veto

- <u>b-jet veto</u>: Reject events with ≥1 jet (pT > 20 GeV, |η| < 2.4) tagged as bottom quark using DEEPCSV algorithm to suppresses top quark backgrounds.
- <u>Th veto</u>: Reject events with >1 hadronic T decay (Th) with pT > 18 GeV and $|\eta| < 2.3$, reconstructed via hadrons-plus-strips to reduces diboson backgrounds.
- Missing Transverse Momentum
 - Require pTmiss > 30 GeV to capture neutrinos from W/Z decays.




Summary of the selection requirements

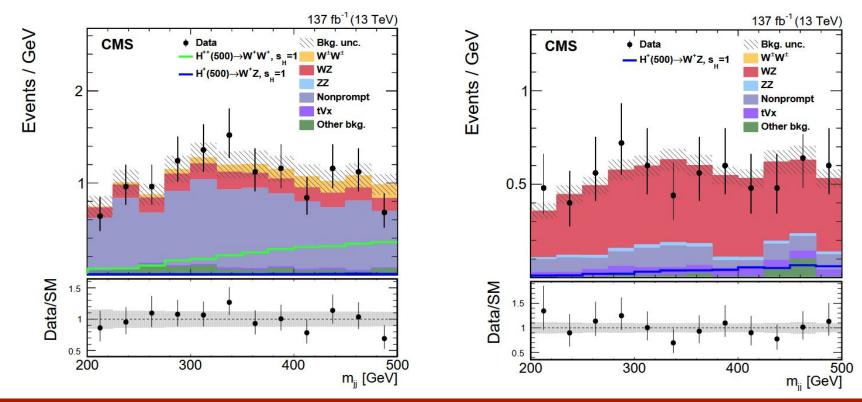
Variable	$W^{\pm}W^{\pm}$	WZ
Leptons	2 leptons, $p_{\rm T} > 25/20 {\rm GeV}$	3 leptons, $p_{\rm T} > 25/10/20 {\rm GeV}$
$p_{\mathrm{T}}^{\mathrm{j}}$	>50/30 GeV	>50/30 GeV
$ \mathbf{m}_{\ell\ell} - m_Z $	>15 GeV (ee)	<15 GeV
$\mathbf{m}_{\ell\ell}$	>20 GeV	—
$m_{\ell\ell\ell}$	—	>100 GeV
$p_{\mathrm{T}}^{\mathrm{miss}}$	>30 GeV	>30 GeV
b jet veto	Required	Required
$\tau_{\rm h}$ veto	Required	Required
$\max(z_{\ell}^*)$	< 0.75	<1.0
m _{ij}	>500 GeV	>500 GeV
$ \Delta \eta_{jj} $	>2.5	>2.5

- Nonprompt Leptons (fake leptons)
 - Source: heavy-flavor decays, misidentified hadrons, photon conversions.
 - One lepton passes a loose ID, the other passes tight.
 - Efficiency to pass tight selection measured in dijet-enriched samples.
 - ~20% uncertainty included due to sample composition.

• The nonpromptlepton CR is defined by requiring the same selection as for the W±W± SR, but with the b jet veto requirement inverted.

Background estimation

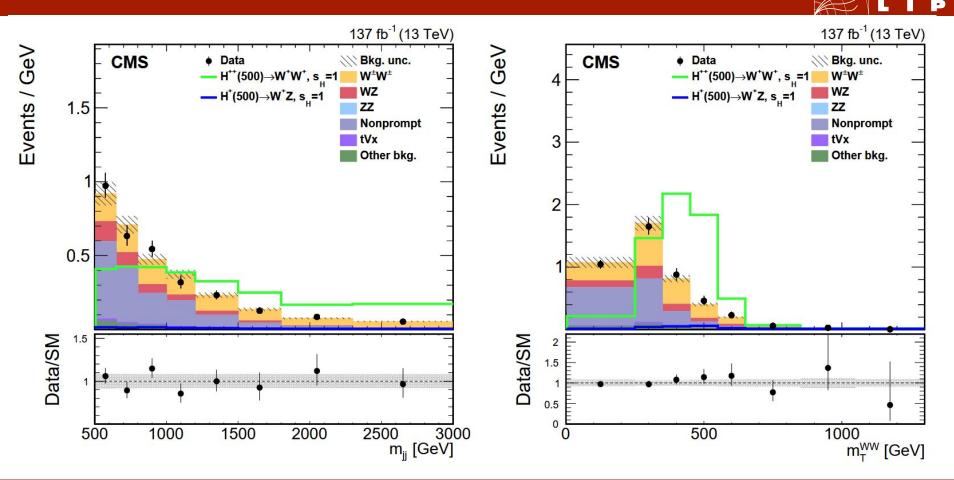
- Electron sign mismeasurement
 - \circ Estimated from simulation, corrected using Z \rightarrow ee data.
 - Mismeasurement rate:
 - Barrel: ~0.01%
 - Endcap: up to 0.3%
- tZq, ZZ, ttV, tribosons, QCD WZ/WW, etc.
 - The tZq CR is defined by requiring the same selection as for the WZ SR, but with the b jet veto requirement inverted. The selected events are dominated by the tZq background process.
 - The ZZ CR selects events with two opposite-sign same-flavor lepton pairs with the same VBS-like requirements
 - Shapes of the tZq and ZZ background processes : from simulation
 - Normalization of tZq, and ZZ background processes : from the data.
 - \circ QCD WZ/WW, tribosons are estimated from simulation



- Use binned maximum likelihood fit over multiple regions:
 - \circ Signal Regions : W±W± and WZ
 - Control Regions : tZq, ZZ, nonprompt leptons
- Variables
 - W±W± channel:
 - Use mjj (dijet mass) and mT (transverse mass of lepton + pTmiss)
 - \circ WZ channel:
 - Use mT(WZ) of the WZ system (3-lepton + pTmiss)

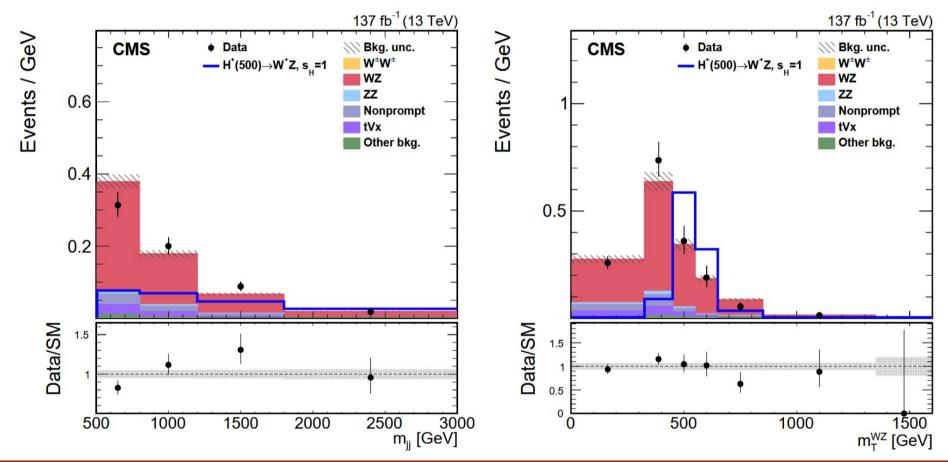
Signal extraction

The mjj distributions after requiring the same selection as for the WW (left) and WZ (right) SRs, but with a requirement of **200 < mjj < 500 GeV**

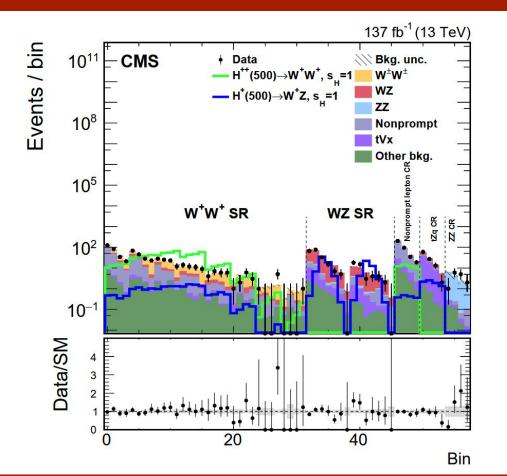

- Experimental
 - Integrated luminosity: ±1.8%
 - Pileup modeling
 - \circ Jet energy scale/resolution, lepton ID, b-tagging, τ h veto
 - Trigger efficiency uncertainties
- Theoretical
 - \circ PDF and scale variations (μ R, μ F)
 - Electroweak corrections to VBF
 - Signal modeling: QCD scale, PDF, parton showering
- Simulation
 - Nonprompt lepton fake rate: ±20%
 - Charge mis-ID corrections

Systematic uncertainties

Source of uncertainty	$\Delta \mu$	$\Delta \mu$
Source of uncertainty	background-only	$s_{\rm H} = 1.0$ and $m_{{\rm H}_5} = 500 {\rm GeV}$
Integrated luminosity	0.002	0.019
Pileup	0.001	0.001
Lepton measurement	0.003	0.033
Trigger	0.001	0.007
JES and JER	0.003	0.006
b tagging	0.001	0.006
Nonprompt rate	0.002	0.002
$W^{\pm}W^{\pm}/WZ$ rate	0.014	0.015
Other prompt background rate	0.002	0.015
Signal rate		0.064
Limited sample size	0.005	0.005
Total systematic uncertainty	0.016	0.078
Statistical uncertainty	0.021	0.044
Total uncertainty	0.027	0.090


Results

CMS,


Results

Results

The bins 1–32 (4×8) show the events in the WW SR (mjj × mT), the bins 33–46 (2×7) show the events in the WZ SR (mjj × mT), the 4 bins 47–50 show the events in the nonprompt lepton CR(mjj), the 4 bins 51–54 show the events in the tZq CR (mjj), and the 4 bins 55–58 show the events in the ZZ CR (mjj).

21

- No excess of events with respect to the standard model background predictions is observed.
- Model independent upper limits at 95% confidence level are reported on the product of the cross section and branching fraction for vector boson fusion production of charged Higgs bosons decaying into vector bosons as a function of mass from 200 to 3000 GeV.
- The observed 95% confidence level limits exclude GM sH parameter values greater than 0.20–0.35 for the mass range from 200 to 1500 GeV.

Thanks for your attention