Search for top squarks

- in the four-body decay mode
- with single lepton final states
- in proton-proton collisions at $\sqrt{s} = 13$ TeV

Student

André Torcato (ist1107109 | PhD 3rd year)

[hep-ex] 16 Jun 2023

irXiv:2301.08096v2

Search for top squarks in the four-body decay mode with single lepton final states in proton-proton collisions at $\sqrt{s}=13\,{\rm TeV}$

The CMS Collaboration*

Abstract

A search for the pair production of the lightest supersymmetric partner of the top quark, the top squark (\tilde{t}_1), is presented. The search targets the four-body decay of the \tilde{t}_1 , which is preferred when the mass difference between the top squark and the lightest supersymmetric particle is smaller than the mass of the W boson. This decay mode consists of a bottom quark, two other fermions, and the lightest neutralino ($\tilde{\chi}_1^0$), which is assumed to be the lightest supersymmetric particle. The data correspond to an integrated luminosity of 138 fb⁻¹ of proton-proton collisions at a center-of-mass energy of 13 FeV collected by the CMS experiment at the CERN LHC. Events are selected using the presence of a high-momentum jet, an electron or muon with low transverse momentum. The signal is selected based on a multivariate approach that is optimized for the difference between $m(\tilde{t}_1)$ and $m(\tilde{\chi}_1^0)$. The contribution from leading background processes is estimated from data. No significant excess is observed above the expectation from standard model processes. The results of this search exclude top squarks at 95% confidence level for masses up to 480 and 700 CeV for $m(\tilde{t}_1) - m(\tilde{t}_1^0) = 10$ and 80 GeV, respectively.

Published in the Journal of High Energy Physics as doi:10.1007/JHEP06 (2023) 060.

Professor, Course & Presentation Date Prof. Dr. Michele Gallinaro

Course on Physics at the LHC (04/07/25)

© 2023 CERN for the benefit of the CMS Collaboration. CC-BY-4.0 license "See Appendix A for the list of collaboration members

The CMS collaboration., Tumasyan, A., Adam, W. et al.,

J. High Energ. Phys. 2023, 60 (2023).

https://doi.org/10.1007/JHEP06(2023)060

Structure

Chapter 1. The framework

 ${\bf SUSY-Introduction}\ \&\ motivations$

Chapter 2. The process The top squark four-body decay mode

Chapter 3. The details

Object & event basics, preselection, multivariate analysis, background estimation

Chapter 4. The results Results, discussion & summary

The framework / SuSy – Introduction & Motivations

Motivating SuSy through the eletroweak hierarchy problem Eletroweak scale ~ $10^2 \text{ GeV} \rightarrow \text{SM}$ works as an effective theory at this scale Planck scale ~ $10^{18} \text{ GeV} \rightarrow \text{SM}$ is not applicable as is...

Quadratic divergencies of the Higgs mass

Higgs mass :: Detected in 2012 to be 125 GeV

But to keep it so at the Planck scale would require a lot of fine-tunning

The framework / SuSy – Introduction & Motivations

Introducing SuSy :: SuperSymmetry

 $\mathbf{g}_{\mathrm{f}} = \mathbf{g}_{\mathrm{S}} \rightarrow \mathbf{Q} \mathbf{u} \mathbf{d} \mathbf{r} \mathbf{a} \mathbf{t} \mathbf{c} \mathbf{t} \mathbf{c} \mathbf{r} \mathbf{m} \mathbf{s} \mathbf{c} \mathbf{a} \mathbf{n} \mathbf{c} \mathbf{e} \mathbf{l} \rightarrow \mathbf{Higgs} \ \mathbf{m} \mathbf{a} \mathbf{s} \mathbf{s} \mathbf{r} \mathbf{e} \mathbf{m} \mathbf{a} \mathbf{n} \mathbf{s} \mathbf{s} \mathbf{s} \mathbf{t} \mathbf{a} \mathbf{b} \mathbf{l} \mathbf{e} \mathbf{u} \mathbf{d} \mathbf{e} \mathbf{r} \mathbf{e} \mathbf{n} \mathbf{e} \mathbf{r} \mathbf{g} \mathbf{g} \mathbf{s} \mathbf{s} \mathbf{s} \mathbf{c} \mathbf{a} \mathbf{l} \mathbf{e}$

Spacetime symmetry with generators $Q :: Q | \text{Fermion} \rangle = \text{Boson}$, $Q | \text{Boson} \rangle = \text{Fermion}$

Superpartners	Changes spin	Supermultiplet
up quark \rightarrow up squark (sup)	${ m spin-0} ightarrow { m spin-1/2}$	Equal mass & quantum numbers

R-parity

Necessary to tackle the baryon and lepton number violating terms. Consequences:

- \rightarrow SuSy particles are always pair produced from SM particles
- \rightarrow A SuSy particle must decay to at least one other SuSy particle
- \rightarrow There exists an LSP (Lightest SuSy Particle) :: Neutral, massive & weakly interact.

The framework / SuSy – Introduction & Motivations

SuperSymmetry breaking

If superpartners of SM particles have equal masses, why haven't we detected them?

 \rightarrow Symmetry must be spontaneously broken in Nature

Minimal SuSy SM (MSSM) :: Introduces a soft SuSy breaking term124 free parameters, able to be further simplified to a smaller phase space

SuSy searches :: What is interesting to start searching now? Processes that allow access to LSP :: Assumed to be the lightest neutralino High t mass \rightarrow Largest mass splitting to its superpartners \rightarrow Lightest stop (NLSP) Cosmological data suggests compressed mass regime \rightarrow Small Δ m(NLSP - LSP) The process / Top squark four-body decay

Decay modes of the stop

Two-body decay Larger than top quark :: $\Delta m > 170 \text{ GeV}$

Three-body decay Larger than W-boson :: $\Delta m > 80$ GeV

Four-body decay Compressed mass regime :: $\Delta m < 80 \text{ GeV}$

The process / Top squark four-body decay

pp collison at $\sqrt{s} = 13$ TeV

Dataset

2016 analysis + 2017 & 2018 data Total $L_{int} = 138 \text{ fb}^{-1}$

- Experimental signature
- \rightarrow Single lepton
- $\rightarrow Large \ MET \ (p_{T}{}^{miss})$
- \rightarrow 4 jets (2 of them b-jets)

The details / Object & event basics

Background processes

 $W+jets \quad Z+\nu\nu bar+jets \quad multi-jet \quad ttbar \quad single-t \quad \ diboson \quad ttbar+X$

Sampled phase space

 $m(\tilde{t}_1) = \{250, 275, ..., 775, 800\} \text{ GeV} \quad \Delta m = \{10, 20, ..., 70, 80\} \text{ GeV}$

CMS PF algorithm 5 candidates

 $\rightarrow {\it e}, \ \mu, \gamma$

 \rightarrow Charged hadrons

 \rightarrow Neutral hadrons

 $\begin{array}{l} Jets: \ |\eta| < 2.4, \ p_T > 30 \ \text{GeV}, \ b\text{-tagging: Loose-to-tight (90-99.9\%)} \\ Prompt \ leptons \ (PV \ origin: \ |d_{xy}| < 0.02 \ \text{cm}, \ |d_z| < 0.1 \ \text{cm}) \\ I_{abs} < 5 \ \text{GeV} \ (p_T < 25 \ \text{GeV}), \ I_{rel} < 0.2 \ (p_T > 25 \ \text{GeV}) \\ Electrons: \ |\eta| < 2.5, \ p_T > 5 \ \text{GeV}, \ Loose \ (90\%) \\ Muons: \ |\eta| < 2.4, \ p_T > 3.5 \ \text{GeV}, \ Loose \ (98\%) \end{array}$

The details / Preselection

Online selection

Data events $\rightarrow p_T^{miss} > 120 \text{ GeV}, H_T^{miss} > 120 \text{ GeV} (Jet-only MET)$

Due to increasing L_{int} year-on-year \rightarrow H_T > 60 GeV (All jets scalar p_T sum)

SuSy processes vs. SM processes Neutralinos existence \rightarrow More MET than a typical SM process $\rightarrow p_T^{miss} > 280 \text{ GeV}$

Suppression of SM processes

Background contribution: W + jets (70%), ttbar (20%), remaining (10%) Suppressing :: W + jets \rightarrow H_T > 200 GeV, ttbar \rightarrow One e or μ + One jet Require hard ISR :: Boosts neutralinos \rightarrow Leading jet p_T > 110 GeV

The details / MET distribution of 2017 data after preselection

From this distribution

- Agreement between data & simulation
- \rightarrow Motivates use of simulated distributions
- Two different Δm regions showcased
- \rightarrow Slightly different behaviors

Alongisde $p_T(l)$ & N_{jet} distributions No discrepancy between 2017 & 2018 data Distributions are quite different

 \rightarrow Motivates multivariate analysis

 $\frac{\text{The details / Multivariate analysis} \rightarrow \text{Boosted Decision Trees (BDTs)}}{\text{Discriminating variables}} \bigstar$

- Preselected events are fed to train BDTs \rightarrow One per Δm region
- Set of 12 variables serve as inputs to BDTs \rightarrow Return BDT output
- \rightarrow MET related :: $p_{T}^{\text{miss}},\,m_{T}$
- \rightarrow Lepton related :: $\mathbf{p}_{\text{T}}(\mathbf{l}),\,\eta(\mathbf{l}),\,\mathbf{Q}(\mathbf{l})$
- \rightarrow Jet related :: p_T^{ISR} , $p_T(b)$, N_{jet} , H_T
- \rightarrow b-jet related :: N_{loose}(b), $\Delta R(l, b)$, D(b)
- Discriminate signal vs. background
- Large sensativity to $\Delta m \models$
- Little sensativity to stop mass

The details / BDT output distributions of 2018 data for four Δm regions

The details / Background estimation

Prompt background	Year	Δm (GeV)	BDT >	$Y_p^{SR}(W+jets)$	$Y_{\rm p}^{\rm SR}(t\bar{t})$	Y_{np}^{SR}
		10	0.31	11.0 ± 2.4	2.2 ± 2.9	20.1 ± 3.5
W + iets, tthar		20	0.32	37.4 ± 4.6	3.3 ± 5.2	49.6 ± 7.0
I Jobsy towar		30	0.38	23.8 ± 3.8	0.0 ± 7.2	41.7 ± 6.1
	2017	40	0.40	15.9 ± 2.6	0.0 ± 8.1	32.6 ± 5.5
	2017	50	0.43	10.9 ± 2.0	0.0 ± 6.7	22.3 ± 4.0
Nonprompt background		60	0.47	3.9 ± 0.8	0.0 ± 6.2	7.6 ± 2.2
		70	0.39	11.1 ± 2.0	8.9 ± 7.6	12.9 ± 2.9
$\mathbf{Z} + \mathbf{v}\mathbf{v}\mathbf{b}\mathbf{a}\mathbf{r} + \mathbf{j}\mathbf{e}\mathbf{t}\mathbf{s}$, multi-jet		80	0.41	15.6 ± 4.3	10.3 ± 9.7	8.3 ± 2.2
		10	0.32	17.3 ± 4.3	0.0 ± 2.4	16.7 ± 3.6
		20	0.39	18.4 ± 2.8	0.3 ± 3.1	14.5 ± 3.4
		30	0.35	48.5 ± 8.1	9.1 ± 9.4	22.5 ± 4.8
Background yield estimates	2018	40	0.43	10.7 ± 3.1	3.4 ± 4.5	11.7 ± 2.9
	2010	50	0.46	8.7 ± 3.0	3.4 ± 4.5	10.5 ± 2.8
$V^{\text{SR}} = \frac{\epsilon_{\text{TL}}}{N^{\text{L}!\text{T}}} \left[N^{\text{L}!\text{T}} \left(\text{Data} \right) - N^{\text{L}!\text{T}} \left(MC \right) \right]$)]	60	0.41	16.5 ± 4.7	16.2 ± 8.8	17.3 ± 3.8
$I_{\rm np} = \frac{1}{1 - \epsilon_{\rm TT}} \begin{bmatrix} N & (Data) - N_{\rm p} \end{bmatrix}$ (M		70	0.40	35.6 ± 8.7	15.2 ± 8.6	16.9 ± 5.2
		80	0.42	16.3 ± 3.7	10.9 ± 7.8	10.7 ± 4.3
$N_{\rm D}^{\rm SR}(X)$, CD						

$$Y_{\rm p}^{\rm SR}\left(X\right) = \frac{N_{\rm p}^{\rm CR}\left(X\right)}{N_{\rm p}^{\rm CR}\left(X\right)} \left[N^{\rm CR}\left(\text{Data}\right) - N_{\rm p}^{\rm CR}\left(\text{non-}X\right) - Y_{\rm np}^{\rm CR}\right]$$

The details / Relative systematic uncertainties

	2017		2018	
Source	Background	Signal	Background	Signal
Integrated luminosity		2.3		2.5
JES	0–2	3–9	0–2	5–10
JER	0–1	0–1	0–1	0–1
b tagging	0–1	0–6	0–1	0–1
Trigger	0–1	1	0–1	1
Lepton efficiency	0–1	0–1	0–1	0–1
Pileup	1–5	0–3	1–4	0–1
ISR ($t\bar{t}$ and signal)	0–1	0–5	0–1	0–5
ISR (W+jets)	0–4		0–4	
Renorm./Fact. scales	0–7	0-1	0–10	0–1
$p_{\rm T}^{\rm miss}$ modeling (FASTSIM)		0–2		0–2
W+jets total	2–6		4–9	
t ī total	1–5		2–7	
Nonprompt lepton total	2–5		2–4	—

The results / 95% CI upper limits in phase space on the σ

Expected vs. observed events For each signal point, the color grid: \rightarrow 95% CI upper limit on the σ For each Δm region: \rightarrow Observed (black) and expected (red) exclusion limits for the *stop* mass \rightarrow Only divergence is seen for $\Delta m = 10$ GeV

Conclusions

 $\Delta m = 10 \,\, {
m GeV}
ightarrow stop \,\, {
m mass} > 480 \,\, {
m GeV}$

 $\Delta m = 80 \text{ GeV} \rightarrow stop \text{ mass} > 700 \text{ GeV}$

References

- The CMS collaboration., Tumasyan, A., Adam, W. et al., J. High Energ. Phys. 2023, 60 (2023). https://doi.org/10.1007/JHEP06(2023)060
- Bertolini, M., Lectures on Supersymmetry (2024).
- https://web.archive.org/web/20240202053316/https://people.sissa.it/~bertmat/susycourse.pdf
- Dawson, S., SUSY and Such, NATO Adv. Study Inst. Ser. B Phys. 365: 33-80 (1997).
- https://arxiv.org/abs/hep-ph/9612229
- Martin, S. P., A Supersymmetry Primer, Perspectives on Supersymmetry, 1-98 (1998) https://arxiv.org/abs/hep-ph/9709356
- Silva, C., Introduction to Supersymmetry & Searches for Supersymmetry, Lectures for the Course of Topics in Particles Physics (2025),
- https://indico.lip.pt/event/1952/timetable/

 \diamond

 \diamond

Year	Δm (GeV)	BDT >	$Y_{\rm p}^{\rm SR}(\rm W+jets)$	$Y_{\rm p}^{\rm SR}(t\bar{t})$	Y_{np}^{SR}	N ^{SR} (Other)	N ^{SR} (Total)	$N^{\rm SR}$ (Observed)
2017	10	0.31	11.0 ± 2.4	2.2 ± 2.9	20.1 ± 3.5	5.4 ± 3.7	38.8 ± 6.3	49
	20	0.32	37.4 ± 4.6	3.3 ± 5.2	49.6 ± 7.0	18.4 ± 9.3	109 ± 14	116
	30	0.38	23.8 ± 3.8	0.0 ± 7.2	41.7 ± 6.1	19.4 ± 9.9	85 ± 14	86
	40	0.40	15.9 ± 2.6	0.0 ± 8.1	32.6 ± 5.5	20 ± 10	69 ± 15	66
	50	0.43	10.9 ± 2.0	0.0 ± 6.7	22.3 ± 4.0	17.9 ± 9.2	51 ± 12	48
	60	0.47	3.9 ± 0.8	0.0 ± 6.2	7.6 ± 2.2	10.3 ± 5.4	21.8 ± 8.5	23
	70	0.39	11.1 ± 2.0	8.9 ± 7.6	12.9 ± 2.9	19.7 ± 9.8	53 ± 13	50
	80	0.41	15.6 ± 4.3	10.3 ± 9.7	8.3 ± 2.2	17.1 ± 8.2	51 ± 14	51
2018	10	0.32	17.3 ± 4.3	0.0 ± 2.4	16.7 ± 3.6	7.1 ± 4.5	41.1 ± 7.6	77
	20	0.39	18.4 ± 2.8	0.3 ± 3.1	14.5 ± 3.4	6.3 ± 3.5	39.4 ± 6.4	57
	30	0.35	48.5 ± 8.1	9.1 ± 9.4	22.5 ± 4.8	33 ± 14	114 ± 19	127
	40	0.43	10.7 ± 3.1	3.4 ± 4.5	11.7 ± 2.9	12.3 ± 6.7	38.1 ± 9.1	49
	50	0.46	8.7 ± 3.0	3.4 ± 4.5	10.5 ± 2.8	10.3 ± 5.2	32.9 ± 8.0	36
	60	0.41	16.5 ± 4.7	16.2 ± 8.8	17.3 ± 3.8	22 ± 10	72 ± 15	61
	70	0.40	35.6 ± 8.7	15.2 ± 8.6	16.9 ± 5.2	30 ± 12	97 ± 18	96
	80	0.42	16.3 ± 3.7	10.9 ± 7.8	10.7 ± 4.3	21.5 ± 9.8	59 ± 14	41

 \bigcirc