Simulation tools for plasma-based accelerators and colliders

Ricardo Fonseca | HEP European Strategy Discussion | LIP, January 20, 2025

ary 20 2025

OSIRIS framework

- Massively Parallel, Fully Relativistic Particle-in-Cell Code
- Parallel scalability to > 1 M cores
- Explicit SSE / AVX / QPX / Xeon Phi / ARM Neon / CUDA support
 - **Extended physics/simulation models**

Committed to open science

Community driven research

- 40+ research groups worldwide are using OSIRIS
- 300+ publications in leading scientific journals
- Large developer and user community
- Detailed documentation and sample inputs files available

Using OSIRIS 4.0

.

The code can be used freely by research institutions after signing an MoU

Find out more at:

http://epp.tecnico.ulisboa.pt/osiris

Ricardo Fonseca: ricardo.fonseca@tecnico.ulisboa.pt

Full scale simulations on the most advanced HPC resources

Exascale developments

- New cross-platform codebase
 - Support for next-gen HPC Exascale architectures
 - x86 / ARM cpus
 - NVIDIA, AMD and Intel gpus
 - Intel fpga
- Same algorithm, multiple toolkits
 - Micro-spatial domain decomposition
 - **OpenMP** + **vectorization** for cpu targets
 - CUDA, ROCm and SYCL for gpu/fpga targets
 - Unified top-level interface
- Current development
 - MPI implementation
 - Expected operational by Q1-2025
 - Continuous integration of OSIRIS features into new codebase

Leonardo Cineca, Italy

Full-scale modeling of AWAKE @ CERN

- Ran on Marenostrum 4 @ BSC \bullet
- 17664 cores
- \sim 3M core×h

Simulation Parameters

- Simulation by A. Helm •
- Simulation box: 75 mm × 13 mm × 13 mm
- Propagation distance; 10 m
- 678 297 600 cells
- ~ 10¹⁰ particles
- $> 10^6$ time-steps

Ricardo Fonseca | HEP European Strategy Discussion | LIP, January 20, 2025

Reduced models enable speedup while preserving relevant physics

OSIRIS quasi-3D¹

• Fields and currents are expanded in cylindrical modes

- Takes advantage of the OSIRIS framework (QED, ionization, and other relevant modules)
- Versatile: capable of simulating beam-driven or laser-driven plasma accelerators, as well as physics of beam-beam collisions.
- Approximates 3D physics at a computational cost comparable to 2D

Quasi-static codes: QuickPIC² and QPAD³

- Primarily used for beam-driven wakefield accelerators
- Provides substantial speedup compared to full PIC simulations \bullet
- Relies on the quasi-static approximation, where beam evolution is much slower than the plasma evolution
- Codes include: \bullet
 - QuickPIC: 3D quasi-static _
 - QPAD: Quasi-3D geometry / quasi-static approximation

Ricardo Fonseca | HEP European Strategy Discussion | LIP, January 20, 2025

QED-PIC and its application to simulate the interaction point

QED processes coupled to PIC

USITIS

I) Classical Radiation recoil

M.Vranic et al., CPC 204 (2016), J. L. Martins et al., PPCF 58 (2016)

2a) Non-linear Compton and Non-linear Breit-Wheeler

T. Grismayer et al., POP 23 (2016), T. Grismayer et al., PRE 95 (2017)

2b) Particle merging algorithm

M.Vranic et al., CPC 191 (2015)

3) Linear Compton scattering

F. Del Gaudio et al., JPP 86(5) (2020), F. Del Gaudio et al., PRL 125 (2020)

4) Bremstrahlung and Bethe-Heitler

B. Martinez et al, arXiv:2406.02491 (2024)

5) Euler-Heisenberg solver (quantum vacuum polarisation)

T. Grismayer et al., NJP **9** 095005 (2021)

6) Heuristic photon emission and pair production for astro setups

F. Cruz et al., ApJL, **919** L4 (2021) and F. Cruz et al., ApJ, **908 (**2021)

Interaction point physics studies with OSIRIS

Disruption beam physics

Disruption in e+e- beams A way of increasing the luminosity

Platform to study strong field QED

Probe non-perturbarive SFQED V.Yakimenko et al., PRL **122**, 190404 (2019)

Electron-electron collision

Regime where disruption and SFQED couple Guinea-Pig inadequate for this regime W. Zhang et al., arXiv:2412.09398 (2024)

Ricardo Fonseca | HEP European Strategy Discussion | LIP, January 20, 2025

