Plasma accelerators for high energy physics

J.Vieira, R.A. Fonseca, N. Lopes, L.O. Silva GoLP/IPFN, IST (Portugal)

P. Muggli CERN and Max Planck Institute for Physics (Germany)

B. Cros

Laboratoire de Physique des Gaz et des Plasmas, (France)

IJÎ #golp

The need and the goal of plasma-based accelerators

Need for transformational developments

Burton Richter

"Without some transformational developments to reduce the cost of the machines of the future, there is a danger that we will price ourselves out of the market." Burton Richter, RAST pp. I-8 (2005).

Plasmas provide more compact and affordable accelerators

Electron (and positron) acceleration $E_{\rm accel} \simeq 1 - 100 \ {\rm GV/m}$

There were significant achievements in the last 5 years

High efficiency e- acceleration

Beam driven

40% energy conversion efficiency

Limited energy gain (0.1-100 GeV)

C. A. Lindstrøm et al, Phys. Rev. Lett. 126, 014801 (2021) M. Litos et al. Nature 515, 92–95 (2014)

A design study is crucial for further advance in the area of HEP

Plasma-based linear collider concept

Parameter	Units	Needed	Achieved
Bunch charge	ρС	833	10-100
Energy spread	%	0.35	<
Normalised emittance H/V	µm/nm	0.890/19	1/1000
Emittance growth budget H/V	µm/nm	0.01/1	1/1000
Effective rep rate	KHz	10-100	0 -3 - 10-2
Effective wall-plug efficiency	%	.4	10%

Global design study efforts for plasma accelerator colliders

>I0 TeV machine for new physics (US)TeV collider for Higgs precision studies (EU)

There are many international plasma accelerator projects on-going

EuPRAXIA (light source) AWAKE (N. Lopes Talk), Injectors for Circular Electron Positron Collider (China) HALHF, ALiVE, ...

Plasma-based collider design is a community goal

Advanced LinEar collider study GROup (ALEGRO) lead by Patric Muggli (CERN, MPP) and Brigitte Cros (LPGP, France).

2024 workshop edition held at IST

Objective

Demonstrate, through **theory** and **computer simulations**, that (laser-driven) plasmabased accelerators can accelerate electrons (positrons) bunches meeting the requirements for HEP in terms of phase-space quality, efficiency, and luminosity.

Design study needs to be endowed and supported by the global HEP community.

Portuguese plasmas for high energy physics

foreseen use in ALiVE

GoLP is extremely active in plasma-based accelerators and in accelerators for astrophysics

Large scale simulations and access to **TIER-0** supercomputers

Laboratory astrophysics

Experimental model of **astrophysical jets**

HiRadMat fireball experiments

CERN provides beams with **relevant** parameters for plasma astrophysics

