Opportunities and Future directions for Astroparticle physics

European Strategy Discussion, Lisbon, January 20th 2025

Ruben Conceição

IF TÉCNICO LISBOA

Study of cosmic rays at the highest energies

EAS Muon Puzzle

Number of muons at ground, R_{μ}

Ruben Conceição

Pierre Auger Coll., Phys.Rev.Lett. 126 (2021) 15, 152002

relative fluctuations agree with X_{max} expectations!!

(see also, Pierre Auger Coll., Phys.Rev.D 109 (2024) 10, 102001)

The shape and relative fluctuations of the muon number distribution gives access to the properties of the **FIRST hadronic interaction** (fraction of energy carried by neutral pions - α_1) ruben@lip.pt

L. Cazon, RC, F. Riehn, Phys.Lett.B 784 (2018) 68-76 L. Cazon, RC, M. Martins, F. Riehn, Phys.Rev.D 103 (2021) 2, 022001 L. Cazon, RC, M. Martins, F. Riehn, Phys.Lett.B 859 (2024) 139115

Depth of the shower maximum

The functional form of α_{had} , ζ_{had} , ζ_{EM} is independent of the hadronic interaction models and the particle contribution to these quantities can be explored at the HL-LHC to exclude models

L. Cazon, RC, M. Martins, F. Riehn, soon to be submitted to Phys. Rev. D

ruben@lip.pt

The functional form of ζ_{EM} and ζ_{had}

Shower electromagnetic sector

Shower hadronic sector

ruben@lip.pt

Available accelerator data primarily cover collisional systems such as **pp** (1-1) and **PbPb** (208-208), whereas extensive air showers (EAS) predominantly involve p/π^{\pm} -N (1-14) interactions

The upcoming p-O collisions will be highly valuable in constraining highenergy hadronic interaction models

Extensive Air Showers

One of the multiple pion - nitrogen interactions

ruben@lip.pt

Extensive Air Showers

How well do we understand them?

Acknowledgements

Fundação para a Ciência e a Tecnologia MINISTÉRIO DA EDUCAÇÃO E CIÊNCIA

REPÚBLICA PORTUGUESA

Backup slides

Analysis of the (X_{max}, S_{1000}) distribution

Explore hybrid FD-SD events and **fit the measured two-dimensional** (X_{max} , S_{1000}) distributions using templates for simulated air showers produced with hadronic interaction models

Pierre Auger Coll., Phys.Rev.D 109 (2024) 10, 102001

Analysis of the (X_{max}, S_{1000}) distribution

None of the post-LHC hadronic interaction models can describe the Auger (X_{max} , S_{1000}) data, even considering the systematic uncertainties

Systematic uncertainties

Ruben Conceição

Pierre Auger Coll., Phys.Rev.D 109 (2024) 10, 102001

More details in J. Vicha's talk

Hadronic Interaction Models

- Most based on the simple parton model associated with the Gribov-Regge multiple scattering approach
- Various approaches in the physics treatment
- Phenomenological models
 with parameters tuned to
 available accelerator data

See T. Pierog talk for latest results on EPOS LHC-R

	_	EPOS-LHC	QGSJet-II.04		
	EPOS4	EPOS LHC-R	QGSJETIII	Sibyll 2.3d	PYTHIA8
Primary domains Theoretical basis	HIC, HEP parton-based GRT, pQCD, energy sharing, saturation	EAS, HIC parton-based GRT, pQCD, energy sharing	EAS GRT, pQCD (DGLAP+HT)	EAS GRT, pQCD (minijet)	HEP MPI, pQCI ISR, FSR
Nuclear collisions	idem	idem	idem	extended superposition	Glauber via Angantyr
Pomeron	semi-hard, dynamical saturation	semi-hard	semi-hard	soft+hard	soft+hard
Parton distributions	generated	custom (GRV for valence)	Pomeron PDFs + DGLAP + HT	GRV	various
Diffractive dissociation (low mass)	diffractive Pomeron	diffractive Pomeron	Good-Walker (3- channel eikonal)	Good-Walker (2- channel eikonal)	longitudina strings
Diffractive dissociation (high mass)	Pomeron exchange	Pomeron exchange	cut-enhanced graphs	Pomeron exchange	MPI
String fragmentation	area law	area law	early Lund type	Lund	Lund
Forward-central correlation	strong	strong	strong	weak	strong
Charm production	$_{\rm pQCD}$	parameterised + intrinsic		parameterised + intrinsic	pQCD
Collective effects	core-corona, hydrodynamical flow, hadronic rescattering	core-corona, parameterised flow, hadronic rescattering			colour reconnectio rope fragm string shov hadronic rescattering

HIM typically used in EAS simulations

The challenge

p-p @ 14 TeV

ruben@lip.pt

- ♦ Hadronic interaction models predict universal value of Λ_{μ} for shallow showers and highly distinct values for deep showers
- ♦ Binning in $X_{max} \Rightarrow$ probe the hadronic activity of the first interaction

$$X_{\rm max} ({\rm gcm}^{-2})$$

- 700 - 825 - 1100
- 775 - 875

EPOS-LHC: $E_0 = 10^{19.0} \text{ eV}, \ \theta = 67^{\circ}$ Arb. 10^5 10^3 10^{1} ii h

16

 $\ln N_{\mu}$

17

14

15

Experimental feasibility

Test applicability to data under several mass composition scenarios and experimental resolutions

	1:3:1:0		7:1:2:0	
$X_{ m max}\ ({ m gcm^{-2}})$	$n_{\min}^{1\sigma}$	$n_{ m min}^{3\sigma}$	$n_{\min}^{1\sigma}$	$n_{ m min}^{3\sigma}$
700	—	_	—	—
775	—	_	—	—
825	13030	100000	18478	100000
875	5080	54393	3519	29587
1100	3113	25898	1877	18805

Measuring Λ_{μ}

$\ln(N_{\mu})$

17

The EAS muon puzzle @ Auger

Eur.Phys.J.C 80 (2020) 8, 751

Phys.Rev.Lett. 126 (2021) 15, 152002

Auger

800

data

Muon puzzle

Phys.Rev.D 109 (2024) 10, 102001

Allow for a change in the rescaling of the **signal on** the ground produced by the hadronic shower component at 1000 m with a factor, R_{had}

$R_{had} > 1$ for all tested hadronic interaction models -EAS muon puzzle

In accordance with previous Auger results Phys.Rev.Lett. 117 (2016) 19, 192001

Poor agreement between data and simulations

Phys.Rev.D 109 (2024) 10, 102001

Allow simultaneously for an ad-hoc **shift on the** X_{max} scale and a change in the rescaling of the **signal on** the ground produced by the hadronic shower component at 1000 m with a factor, R_{had}

Muon puzzle + Shift in X_{max} scale

X_{max} from SD trace using a DNN

Accepted in PRL + PRD (2024)

EAS muon fluctuations

Phys.Rev.Lett. 126 (2021) 15, 152002

The muon relative fluctuations are in agreement with the mass composition expectations derived from the analysis of X_{max} data

L. Cazon, RC, F. Riehn, PLB 784 (2018) 68-76

 α_1 is the fraction of energy going into the hadronic sector in the first interaction

$$\sigma(\alpha_1) \rightarrow 70 \% \sigma(N_\mu)$$

Suggestion that muon deficit might be related with description of low energy interactions

Many other EAS measurements...

Phys.Rev.Lett. 109 (2012) 062002

JCAP 1903 (2019) no.03, 018

Measurement of the proton-air crosssection at E~10¹⁸ eV Measurement of average e.m. longitudinal profile shape

Phys.Rev.D 96 (2017) 12, 122003

PoS (ICRC2023) 339

Measurement of time profiles of the signals recorded with the water-Cherenkov detectors

The number of muons measured in hybrid events

(A plethora of measurements to fully understand the shower)

Multi-hybrid shower events

DNN

