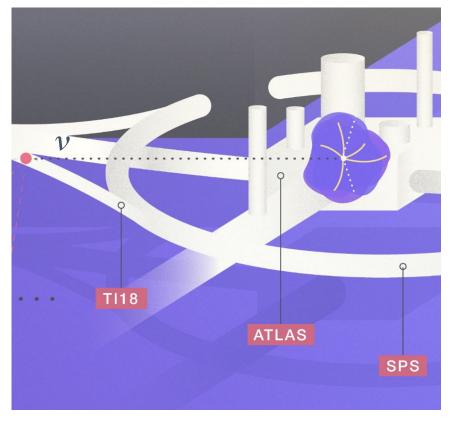
Collider neutrinos

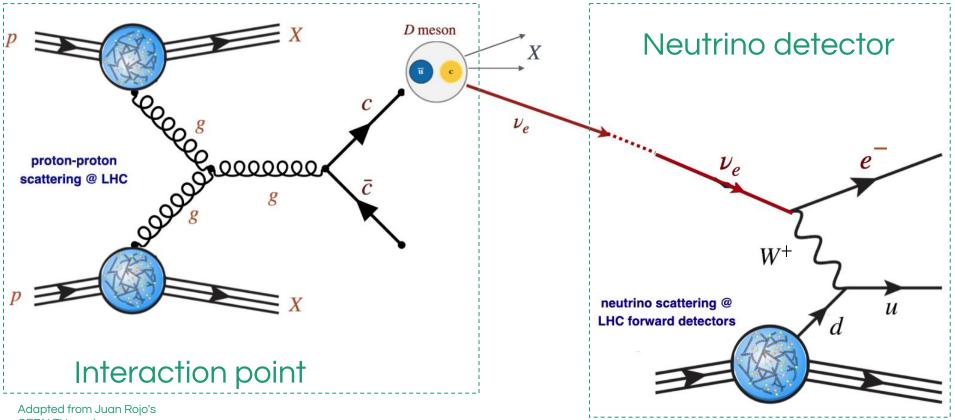
Portuguese Discussion on the European Strategy for Particle Physics

Lisbon, January 20 2025


LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS Cristóvão Vilela

Neutrinos at the Large Hadron Collider

- Initial studies on neutrino detection at the LHC date back to the 80s.
 CERN-1984-010-V-2.571; Nucl. Phys. B405, 80; LPNHE-93-03
 - Back then, seen as an opportunity to discover the v_{τ} .
 - Also to search for new particles. Phys.Lett.B 153 (1985) 183
- Large flux of neutrinos in the forward region.
- Very high neutrino energy $(\sigma_v \propto E_v)$.


 \Rightarrow A small-scale LHC experiment can observe neutrinos of all **three types** .

- Highest energy human-made neutrinos!
- Two neutrino experiments in operation at the ATLAS interaction point since June 2022:
 SND@LHC and FASER v

Hadron collider neutrino physics

CERN TH seminar

Hadron collider neutrino physics

Neutrino interactions

C

- Measure v interactions in unexplored ~TeV energy range.
- Large yield of v_{τ} will likely double existing data.

 $^{\nu_e} \nu_{\mu} \nu_{\mu}$

• About 20 events observed by DONuT and OPERA.

proton-proton scattering @ LHC

QCD

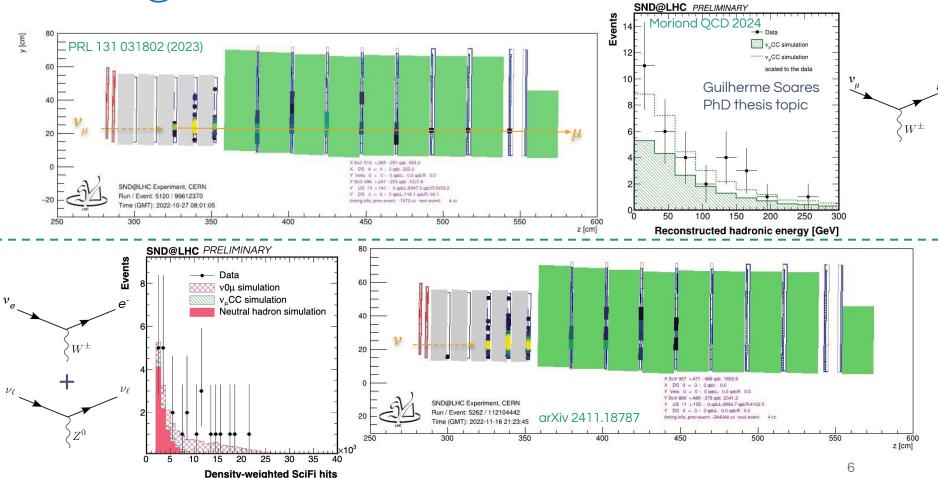
- Decays of **charm** hadrons contribute significantly to the neutrino flux in SND@LHC.
 - \Rightarrow Measure forward charm production with v_s s.

0000000

 \Rightarrow Constrain gluon PDF at very small x.

Beyond the Standard Model

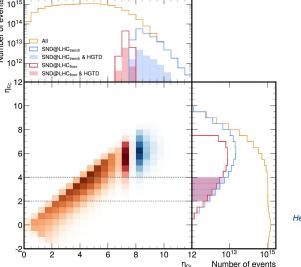
• Search for **new**, feebly interacting, **particles decaying** within the detector or **scattering** off the target.

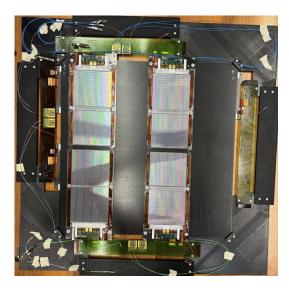

Flavour

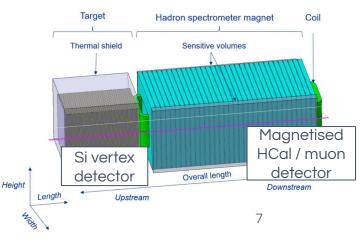
- Detection of all three types of neutrinos allows for tests of lepton flavour universality.
 - Charm parentage leads to partial cancelation of flux uncertainties

 W^{-}

 $e^{-\mu^{-1}}$


SND@LHC first neutrino measurements




SND@HL-LHC

- Order-of-magnitude increase in event yield in HL-LHC.
 Emulsion technology is not viable in this context.
- Experiment will take ownership of CMS tracker outer barrel modules to instrument neutrino target.
 - First use of silicon for neutrino vertex detection.
 - Retain tau neutrino identification capability.
 - Opportunity to discover the tau antineutrino!
- Opportunity to detect neutrinos in coincidence with activity in ATLAS (over 1000 events). 2105

2	SND@LHC _{trench}	
Flavour	light parent	charm parent
$v_\mu + ar v_\mu$	6.5×10^{4}	7.9×10^{3}
$v_e + \bar{v}_e$	4.0×10^{3}	8.5×10^{3}
$v_ au + ar v_ au$		3.9×10^{2}
Total	1.1×10^{5}	1.7×10^{4}

Portuguese roles and strategy

Roles within the collaboration

- Physics coordination
- Upgrade coordination
- Editorial board membership

Hardware responsibilities

- Upgrade:
 - Silicon vertex detector power cables.
 - RPC fast timing detectors
- Current detector:
 - Sealed-RPC muon telescope
 - HCal / muon system mechanical structure

Portuguese group strategy

- Exploitation of Run-3 data:
 - Maintain / enhance leadership in neutrino and BSM analyses.
 - Most physics results still to come!
- High-luminosity upgrade:
 - Maintain / enhance central role in project management.
 - Pursue major detector responsibilities.
 - Highly synergistic with SND@SHiP.

European strategy priority: exploitation of the HL-LHC to its fullest extent.