

The Muon Collider challenges and perspectives

European strategy discussion

Michele Gallinaro January 20, 2025

Co-Funded by the European Union (EU): MuCol HORIZON-INFRA-2022-DEV-01-01

Why a muon collider?

Muon Collider Overview

Luminosity

 $\mathcal{L} = \frac{n_c f N \, \pi \, N}{4\pi \sigma_x \sigma_y}$

- High charge per muon bunch
 - Requires powerful proton driver, high-yield target, fast acceleration
- Small transverse beam size
 - Requires beam with low transverse emittance
 - Requires strong focusing magnets @IR
- Many collisions
 - Requires **strong** dipole magnets to minimize collider radius

Design parameters

	LHC	Muon collider		
Center-of-mass energy (\sqrt{s})	14 TeV	3 TeV	10 TeV	
Bunch length	7.7 cm	5 mm	1.5 mm	
Transversal bunch size	16.7 µm	3 µm	0.9 µm	

Parameter	Unit of measure	Target value		
Center-of-mass energy (\sqrt{s})	TeV	3	10	
Luminosity	$10^{34} \text{ cm}^{-2} \text{ s}^{-1}$	2	20	
Collider circumference	km	4.5	10	
Muons per bunch	10 ¹²	2.2	1.8	
Beta function at interaction point	mm	5	1.5	

	Muon collider	HL-LHC
Maximum dose at $R = 2.2$ cm	10 Mrad	100 Mrad
Maximum dose at $R = 150$ cm	0.1 Mrad	0.1 Mrad
Maximum fluence at $R = 2.2$ cm	$10^{15} \text{ 1-MeV} n_{\rm eq} {\rm cm}^{-2}$	$10^{15} \text{ 1-MeV} n_{\rm eq} {\rm cm}^{-2}$
Maximum fluence at $R = 150$ cm	$10^{14} \text{ 1-MeV} n_{eq} \text{ cm}^{-2}$	10^{13} 1-MeV $n_{\rm eq}$ cm ⁻²

Comparison to LHC/HL-LHC

A broad physics program

Rep.Prog.Phys.85 (2022)084201, Ann.Rev.Nucl.Part.Sci 74(2024)233)

Multi-TeV lepton collisions enable a broad physics program

- Direct and indirect new physics searches
- Precise SM measurements in unexplored energy range
- Higgs boson couplings to fermions & bosons, trilinear and quartic couplings (λ_3, λ_4)
- \Rightarrow Determination of Higgs potential

$$V(h) = rac{1}{2}m_h^2 h^2 + \lambda_3 v h^3 + rac{1}{4}\lambda_4 h^4$$

Key challenges

Background from muon decays

arXiv:2203.07964, arXiv:2407.12450

- Beam induced background (BIB) from muon decays products interacts with machine components and shields inside the detector (nozzles)
- Soft particles are mostly out-of-time wrt bunch crossing
- ~10⁸ photons, ~10⁷ neutrons, ~10⁵ e⁺/e⁻ enter the detector at every bunch crossing in [-1,15] ns window
- Extensive simulation studies performed

IMCC

- R&D studies are coordinated by the International Muon Collider Collaboration (IMCC), established at CERN in 2022 as a result of the recommendations of ESPP2020
- Main goals
 - Assess and develop muon collider concept
 - Identify potential sites
 - Develop R&D roadmap towards the collider
 - Develop an initial muon collider stage that could start operations ~2050
- Fruitful collaboration with US HEP community
 - Studies began where US MAP program (2010-2014) left
- Outcome of US Snowmass 2021 very favorable. P5 final report recommends pursuing R&D on a machine with partonic center of mass energy of 10 TeV and above

muoncollider.web.cern.ch

IMCC partners

IEIO	CERN	IT	INFN	SE	ESS	US	Iowa State University
FR	CEA-IRFU		INFN, Univ., Polit. Torino		University of Uppsala		University of Iowa
	CNRS-LNCMI		INFN, LASA, Univ. Milano	NL	University of Twente		Wisconsin-Madison
	Mines St-Etienne		INFN, Univ. Padova	FI	Tampere University		University of Pittsburgh
DE	DESY		INFN, Univ. Pavia	LAT	Riga Technical University		Old Dominion
	Technical University of Darmstadt		INFN, Univ. Bologna	СН	PSI		Chicago University
	University of Rostock		INFN Trieste		University of Geneva		Florida State University
	КІТ		INFN, Univ. Bari		EPFL		RICE University
UK	RAL		INFN, Univ. Roma 1	BE	Univ. Louvain		Tennessee University
	UK Research and Innovation		ENEA	AU	НЕРНҮ		MIT Plasma science center
	University of Lancaster		INFN Frascati		TU Wien		Pittsburgh PAC
	University of Southampton		INFN, Univ. Ferrara	ES	I3M		Yale
	University of Strathclyde		INFN, Univ. Roma 3		CIEMAT		Princeton
	University of Sussex		INFN Legnaro		ICMAB		Stony Brook
	Imperial College London		INFN, Univ. Milano Bicocca	China	Sun Yat-sen University		Stanford/SLAC
	Royal Holloway		INFN Genova		IHEP		
	University of Huddersfield		INFN Laboratori del Sud		Peking University	DoE labs	FNAL
	University of Oxford		INFN Napoli		Inst. Of Mod. Physics, CAS		LBNL
	University of Warwick	Mal	Univ. of Malta	КО	Kyungpook National University		JLAB
	University of Durham	EST	Tartu University		Yonsei University		BNL
	University of Birmingham	PT	LIP		Seoul National University	Brazil	CNPEM
	University of Cambridge			India	СНЕР		

Detector concepts

Two detector concepts being developed

- Required resolutions
- MDI and background suppression

Increasing efforts for further improvements and exploiting AI, ML and new technologies

- Synergies with HL-LHC developments
- Close integration with ECFA detector R&D

Muon cooling demonstrator

- First step towards a muon collider is to build a demonstrator facility
 - Demonstrate reduction of beam emittance
- Test cooling cell technology in operational environment
- Study and test production target
- Develop new beam monitoring instrumentation
- Depending on available resources, the muon beam could be accelerated for muon and neutrino physics

Ionization cooling principle

Summary

- MC offers a unique opportunity for energy frontier with high luminosity
- No fundamental showstoppers found
- Highly motivated community
- Technology needs a strong R&D program
 - Complete end-to-end simulation
 - Develop cooling technology (klystron, cavities, HTS solenoids, etc) from single to multiple cells
 - Dedicated HTS magnet program
 - Progress towards CDR/TDR (~2030) for the demonstrator

⇒ Muon Collider combines precision physics and high-discovery potential

Numerous opportunities for everyone to get involved!

Design parameters: Staging

Parameter	Symbol	unit	Scenario 1		Scenario 2	
			Stage 1	Stage 2	Stage 1	Stage 2
Centre-of-mass energy	$E_{ m cm}$	TeV	3	10	10	10
Target integrated luminosity	$\int \mathcal{L}_{ ext{target}}$	ab^{-1}	1	10	10	
Estimated luminosity	$\mathcal{L}_{ ext{estimated}}$	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	2.1	21	tbc	14
Collider circumference	$C_{ m coll}$	km	4.5	10	15	15
Collider arc peak field	$B_{ m arc}$	Т	11	16	11	11
Luminosity lifetime	$N_{ m turn}$	turns	1039	1558	1040	1040
Muons/bunch	N	10^{12}	2.2	1.8	1.8	1.8
Repetition rate	$f_{ m r}$	Hz	5	5	5	5
Beam power	$P_{\rm coll}$	MW	5.3	14.4	14.4	14.4
RMS longitudinal emittance	ε_{\parallel}	eVs	0.025	0.025	0.025	0.025
Norm. RMS transverse emittance	ε_{\perp}	μm	25	25	25	25
IP bunch length	σ_z	mm	5	1.5	tbc	1.5
IP betafunction	β	mm	5	1.5	tbc	1.5
IP beam size	σ	μm	3	0.9	tbc	0.9
Protons on target/bunch	$N_{ m p}$	10^{14}	5	5	5	5
Protons energy on target	$E_{ m p}$	${ m GeV}$	5	5	5	5

Background from muon decays

- Beam induced background (BIB) from muon decays products interacts with machine components and shields inside the detector (nozzles)
- Soft particles are mostly out-of-time wrt bunch crossing
- ~10⁸ photons, ~10⁷ neutrons, ~10⁵ e⁺/e⁻ enter the detector at every bunch crossing in [-1,15] ns window
- Extensive simulation studies performed

