

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS partículas e tecnologia

[Future Collider Projects]

P. Conde Muíño

Disclamer

- I've been given the draconian task of summarising a wealth of colliders/physics measurements in 15 min
 - Many possible future colliders
 - Many different physics studies
 - Very few up to date comparisons
 - A lot of developments in the last months

I will try my best to offer an unbiased discussion about the different options

14 years of SM measurements @ LHC

Standard Model Production Cross Section Measurements

Status: February 2022

3

12 years of Higgs boson measurements

- Discovery of the Higgs boson
- Measured
 - + its interactions with W, Z, t, b, au, μ
 - Spin/CP properties
- Searched for new physics: exotic decays, CP-violation in the Higgs sector, ...
- Overall, results show good agreement with the SM expectations 3-20%
- Limited sensitivity to the Higgs self interaction

Searches for new exotic particles at the LHC

*Only a selection of the available mass limits on new states or phenomena is shown. †Small-radius (large-radius) jets are denoted by the letter j (J).

Many unanswered questions remain...

- Why is there a matter-antimatter asymmetry in the Universe?
- What are dark matter and dark energy?
- Why is gravity so weak?
- Why is the Higgs boson so light (naturalness/hierarchy problem)?
- What is the origin of flavour?
- What is the origin of neutrino masses and oscillations?
- Is the Universe stable?

Measuring the Higgs boson properties precisely

HL-LHC: the next Future Collider!

10 times higher integrated luminosity up to 2040!

High Luminosity LHC expectations- Examples

What's next?

Future Colliders

International Muon Collider

Energy Recovery LINACs

HALHF Plasma accelerators

11

e^+e^- colliders — operation goals

Linear

Circular

ILC, Japan*

- 250 GeV- 300 GeV 500 GeV- 1000 GeV
- Polarisation: $\pm 80, \pm 30$

*A similar option has been proposed @CERN! (LCV2025)

CLIC

CLIC, CERN

- 380 GeV, 1500 GeV, 3000 GeV
- Polarisation: ±80

FCC-ee, CERN

- Energy: $m_{Z'} 2 \times m_{W'}$ 240 GeV, $2 \times m_t$
- No polarisation
- 4 interaction points

CEPC, China

• $m_{Z'} 2 \times m_{W'} 240$ GeV,

upgrade: $2 \times m_t$

- No polarisation
- 2 interaction points (could be 4)

Same tunnel can hold a hh collider @ ~100 TeV 12

Linear versus circular Linear Circular Energy E = eGLWith e = electric charge, G = gradient, L = length**Advantages:** Can go up to higher energies Polarised beams Limitations: $Cost \propto Energy$

 $E \propto B\rho$

With B = magnetic field, ρ = average bending radius

Can reach higher instantaneous luminosities

More than 1 interaction point possible

Energy limited by synchrotron radiation E^4 $\propto \frac{E}{m^4 \omega}$ 13

Adapted from J. List, LCW2024

High energy opens new possibilities

500...600 GeV, 4 ab-1:

- Higgs self-coupling in ZHH
- Top quark EW couplings
- Top Yukawa coupling (incl CP structure)
- improved Higgs, WW and ffbar
- probe Higgsinos up to ~300 GeV
- probe Heavy Neutral Leptons up to ~600 GeV
 800...1000 GeV, 8 ab-1:
- Higgs self-coupling in VBF
- further improvements in tt, ff, WW,
- probe Higgsinos up to ~500 GeV
- probe Heavy Neutral Leptons up to ~1000 GeV
- searches, searches, searches,

Adapted from J. List, LCW2024

e^+e^- colliders — energies and luminosities

Proposal	CEPC		FCC-ee		CLIC	ILC [‡]
Lum./IP $[10^{34} \text{ cm}^{-2} \text{s}^{-1}]$	5.0	0.8	7.7	1.3	2.3	2.7
Number of IPs	2	2	4 (2)	4 (2)	1	1
Tot. integr. lum./yr [1/fb/yr]	1300	217.1	4000	670	276	430
			(2300)	(340)		
Eff. physics time / yr [10 ⁷ s]	1.3	1.3	1.24	1.24	1.2	1.6
Energy cons./yr [TWh]	0.9	1.6	1.51	1.95	0.6	0.82
					_	

S. Stapnes, CEPC Workshop, Edinburg, July 2023

Default scenarios:

- FCC-ee: 50 MW, with 4 interaction points
- CEPC: 30 MW (if fully paid by China) with 2 interaction points
 - 4 will be possible
 - 50 MW scenario possible with international contributions

Table 3.2: The dependence of the event rates for the s-channel $e^+e^- \rightarrow ZH$ process and the pure t-channel $e^+e^- \rightarrow Hv_e v_e$ and $e^+e^- \rightarrow He^+e^-$ processes for several example beam polarisations [24].

blar	isation	Polarisation	Scaling factor		
		$P(e^-):P(e^+)$	$e^+e^- \rightarrow ZH$	$e^+e^- \rightarrow H \nu_e \bar{\nu}_e$	$e^+e^- \rightarrow He^+e^-$
	$e^ e^+$	unpolarised	1.00	1.00	1.00
		-80%: 0%	1.12	1.80	1.12
$\sigma_{ m RR}$	\longrightarrow	-80%:+30%	1.40	2.34	1.17
		-80%:-30%	0.83	1.26	1.07
$\sigma_{ m LL}$	\leftrightarrow	+80%: 0%	0.88	0.20	0.88
		+80%:+30%	0.69	0.26	0.92
<i>a</i>		+80%:-30%	1.08	0.14	0.84
$\sigma_{\rm RL}$					

17

J. List, arXiv:2012.11267v2

$\sigma_{ m LR}$

Longitudinal polarisation expected at linear colliders

- Cross sections can be enhanced/reduced
- Background control
- Improves as well efective operators fits (tuning of the cross sections)

Schedules

From P. Campana, LCW2024

Cost of the projects

Other relevant figures to take into account • Time and cost of

operations

Sustainability issues
 (See A. Blondel et al.)

HERA cost 0.7 G\$ ~20% non-german contributions LEP cost 1.4 G\$

LHC cost 5 G\$ benefitting of LEP tunnel + 15% NMS contributions

FCCeecost12 G\$CEPCcost5 G\$ILCcost7 G\$

However, CEPC baseline cost can be covered by China!

Energy-recovery LINAC >1 TeV ep collisions

Less mature but... very interesting!

Smaller synchrotron radiation allows higher C.o.M. energy (10 TeV!)

| Physics | Reach

- Combined EFT Fit
 HL-LHC combined with all collider hypothesis
- Circular colliders
 provide better
 sensitivity for more
 parameters

Higgs self-coupling

M. Mühlleitner

Precision on Trilinear Higgs Self-Coupling

Collider Observable	LHC	HL-LHC	FCC-ee ₃₆₅	CEPC	ILC	CLIC	Muon Collider	HE-LHC 27TeV, 15ab ⁻¹	FCC-hh
Single Higgs $ \delta_{h^3}^{exp} $			FCC-ee w/HL-LHC 33% [55] FCCee4IP w/HL-LHC 24% [55]	CEPC ₂₄₀ + HL-LHC 35% [82]	ILC ₂₅₀ / C ³ 250 49% [51,52]	CLIC₃₈₀ 50% [54]			
Di- Higgs $\delta^{exp}_{h^3}$	- 1.4-7.5 [3,4]	50% [5,6]			ILC ₅₀₀ / C ³ 550 20% [10,51,52] ILC ₁₀₀₀ 10% [7]	CLIC ₁₅₀₀ 36% [54] CLIC ₃₀₀₀ ~9% [9,54]	Muon _{3TeV} 15-30% [64] Muon _{10TeV} 4% [64]	95%CL ~30% [11] 68%CL ~15% [11]	30 ab-1 3.4-7.8% [79]

New Physics Exclusion Reach

Examples of exclusion limits from ESUPP 2020

• Numbers are likely outdated!

Complementarity between linear and circular colliders!

Circular e^+e^-

24

+hh + eh

Complementarity of colliders

Ultimate precision (1-4‰) obtained with a combination of all colliders

Numbers are likely outdated! (Many studies ongoing)

HI +FCC-ee (4 IF) HL+FCC-eh/hh HL+FCC-hh HI +FCC-ee/eh/hh kappa-0-HL HL+FCC-ee₂₄₀ HL+FCC-ee HL+FCC-ee/hh $\kappa_W[\%]$ 0.86 0.23 0.17 0.39 0.14 0.38 0.27 $\kappa_Z[\%]$ 0.15 0.14 0.094 0.13 0.27 0.63 0.12 $\kappa_{g}[\%]$ 0.88 0.74 1.1 0.59 0.55 0.56 0.46 $\kappa_{\gamma}[\%]$ 1.3 1.2 1.1 0.29 0.32 0.56 0.28 0.7 0.68 $\kappa_{Z\gamma}[\%]$ 10. 10. 10. 0.710.89 κ_c [%] 1.5 1.3 0.88 1.2 1.2 0.94 0.99 κ_t [%] 3.1 3.1 3.1 0.95 0.95 0.95 0.5 $\kappa_b[\%]$ 0.94 0.59 0.44 0.52 0.99 0.41 $\kappa_{\mu}[\%]$ 3.9 3.3 0.41 0.450.68 0.414. 0.9 $\kappa_{\tau}[\%]$ 0.61 0.39 0.49 0.63 0.9 0.42 Γ_H [%] 1.6 0.87 0.55 0.67 0.61 1.3 0.44 FCC-hh FCC-ee eh+hh (or CEPC) (CEPC-hh?)

Which collider is better?

•Which project will cover the widest physics programme?

Acknowledgments

Backup

A. Blondel, C. Grojean, P. Janot, G. Wilkinson, arXiv: 2412.13130

Table 1: Scenarios for future collider options considered in this note for the measurement of Higgs properties. The changes with respect to Ref. [11] are highlighted in bold and explained in the text.

Collider	Longitudinal Polarisation (e^-, e^+) (%)	$\sqrt{s} \; ({ m GeV})$	$\begin{array}{c} \text{Integrated} \\ \text{Luminosity} \\ (\text{ab}^{-1}) \end{array}$	Time (Years)	Ref.	
	0.0	240	10.8	3	[1]	
FCC-ee	0,0	350 365	0.42		[15]	
	1.80.0	380	1.5	8	[6]	
	$\pm 80, 0$	1500	2.5	7	[[<mark>0</mark>]	
ILC		250	2	15		
	$\pm 80,\pm 30$	350	0.1	1.5	[0]	
		500	4	11.5	[[⁰]	
	$\pm 80,\pm 20$	1000	8	13		

Precision Vs cost/carbon footprint

Table 5: Precision reach (in percentage) on effective couplings from a SMEFT global fit of the Higgs measurements after the planned second stages of FCC-ee (365 GeV), CLIC (1.5 TeV) and ILC (500 GeV), i.e., after 8, 15 and 28 years of operation, respectively. The results from the free- $\Gamma_{\rm H}$ fit, scaled from Ref. [11], are shown.

Precision (%)	FCC converse	CLIC	$ILC_{250+500}$	
on coupling to	r 00-ee240+365	0110380+1500		
b	0.40	0.56	0.56	
с	0.89	1.81	1.2	
au	0.42	0.89	0.63	
Z	0.17	0.36	0.26	
W	0.17	0.37	0.26	

Total Cost (with overall OPEX)

A. Blondel, C. Grojean, P. Janot, G. Wilkinson, arXiv: 2412.13130

Precision versus sustainability

https://arxiv.org/pdf/2307.04084

How does the LHeC progamme fit into the collider landscape?

The LHeC (and/or FCC-eh) is not "the" major new collider for CERN, but enables an ultimate upgrade of the existing LHC (and/or future FCC) programme.

However, the LHeC is the first affordable collider at CERN that can significantly go beyond the HL-LHC physics reach and complete its physics programme in the 2040'ies.

existing/future proton accelerator

new electron accelerator with Energy Recovery Linac technology it would intrinsically be a major step addressing the energy sustainability aspect

P3.2 P3.3

P2

The LHeC technical infrastructure and accelerator can be re-used for FCC-eh and as injector for FCC-ee.

J. D'hondt, ICHEP 2024

P5

Some physics highlights of the LHeC (ep/eA@LHC)

on several fronts comparable improvements between LHC ightarrow HL-LHC as for HL-LHC ightarrow LHeC

J. D'hondt, ICHEP 2024

DIS scattering cross sections - ep 1y

 complete unfolding of PDFs extended in (Q²,x) by orders of magnitude EW physics – pp & ep

• Δm_W to 2 MeV (today at ~10 MeV) pp with ep input • $\Delta sin^2 \theta_W^{eff}$ to 0.00015 (same as LEP + scale dep) ep only

Top quark physics – ep only

- \circ |V_{tb}| precision better than 1% (today ~5%)
- \circ top quark FCNC and γ , W, Z couplings

Strong interaction physics - ep 1y

- $\circ \alpha_s$ precision of 0.2%
- o low-x: a new discovery frontier

3 (2021) 110501, 364p (updated CDR)

The Large Hadron-Electron Collider at the HL-LHC, J. Phys. G 48 (2021) 110501, 364p (updated CDR)

17

J. Guimarães, LIP Seminar

Super proton-proton Collider (SppC)

Compatible with CEPC and in same tunnel

- E_{cm} 100-150 TeV with 100 km ring
- 2 IPs, 10³⁵ cm⁻²s⁻¹ per IP
- Can extend to heavy ion collisions
- Retaining the CEPC collider add possible ep option

Current consideration for SppC:

- 20-24T B field, twin-aperture magnets
- New HTS (IBS?) magnets (in 20-30 years)

Stainless-steel stabilized IBS tape Significantly reduced cost and raised mechanical properties

achieved the highest $J_{\rm e}$ in 2022 IBS coils reached 49 A at 4.2 Kelvin and 35 T

FCC- Feasibility Study