

Design Optimization for a flat-panel PET scanner with Dol Capability

PROJECT MEFT

Author: Marta Santos Simões

Supervisors: Professor Doctor Andrey Morozov Professor Doctor Patrícia Gonçalves. **January**, 2025

Introduction

Cancer

Cancer consists of more than 100 diseases defined by the uncontrolled growth of abnormal cells.

Proton therapy

Proton therapy is a cutting-edge cancer treatment that precisely targets tumors while minimizing damage to healthy tissues.

Range verification

Prompt Gamma (PG) and Positron Emission Tomography (PET) are the most promising techniques for range verification.

Positron Emission Tomography

Spatial Resolution and Dol Capability in PET

Figure 3. Sketch showing parallax error from an oblique LOR without Dol: dashed line represents assumed LOR, solid line represents true LOR with Dol.

- SR is the minimum distance at which two point sources can be distinguished in an image.
- Factors affecting SR include positron range, gamma non-collinearity, and Dol.
- The Dol indicates the exact location of gamma interaction within the detector crystal.
- Single-positioning can cause parallax errors from oblique gamma rays, distorting the LOR.

Project Goal

Objective 1

Develop a simulation model of a basic scanner detection unit, comprising a LYSO scintillator, 3 x 3 x 30 mm³, encapsulated with ESR film, and two SiPMs sensors, using the ANTS3 toolkit.

Objective 2

Determine the Dol resolution by testing different crystal sizes and encapsulation approaches. Validation of the model with experimental data collected from UT Austin.

Objective 3

Characterize the resolution and image distortion of the optimized scanner across the entire field of view.

Project Methods

- The analysis of the Dol evaluated the impact of lateral surface roughness.
- The model will incorporate wavelength-resolved photon transport and SiPMs' wavelength-dependent PDE.
- The Dol will be parameterized based on the normalized signal difference between the sensors.
- Resolution will be compared in XYZ coordinates, with and without Dol correction.

Figure 7. Preliminary model made by the collaboration. The (U-L)/(U+L) represents the normalized signal difference between the upper ("U") and lower ("L") sensors. Position (in mm) is the distance between the sides inside the crystal, with 0 at the center. The four curves correspond to a polished surface and three roughness levels (4 μ m, 14 μ m, and 28 μ m).

THANK YOU!

Does anyone have any questions?

marta.s.simoes@tecnico.ulisboa.pt https://tecnico.ulisboa.pt/pt/ https://www.lip.pt/

7