Towards the neutrinoless double-beta decay study with SNO+: radioactive background characterization with SNO+ scintillator data

Manuel Abreu

Supervisors: Dr. Valentina Lozza, Prof. Patricia Conde Muíño

28/1/2025

Identification of ²¹⁴Bi events

Coincidence analysis (tagging technique)

- 1. Identify a Po event by an energy cut
- 2. Go back in time to search for events that are in coincidence with the Po $\Delta t < 1$ ms $\rightarrow 6 \times T_{1/2}$
- 3. Select events that satisfy criteria (2) and have an energy > 1.2 MeV (Bi candidate)
- 4. Furthermore ask that the position difference between Po and Bi is < 1 m $\,$

Activity

- Tagged events are converted into an activity by the efficiency: $A = \frac{N_{tag}}{\epsilon}$
- Studied the dependence of the activity with time using the first 40 days of scintillator data after fill.
- Fit the data: $f(x) = p_0 e^{-p_1 x} + p_2$

From the Fit

- Extract half-life from p₁
- $t_{1/2} = (3.81 \pm 0.024) \text{ days} \rightarrow^{222} \text{Rn} (t_{1/2} = 3.82 \text{ days})$

Analysis113/9

• $p_2 \neq 0 \rightarrow {}^{238}$ U concentration

 222 Rn was found to be in the detector following fill operations \rightarrow Exclude the first 20 days of scintillator in the following analysis.

Results

The total cumulative sacrifice is 1.3%

Analysis of events' spatial distribution after all cuts have been applied.

🕕 TRENIER LISBOA

Results||4/9

Analysis Results Thank You Back Up Slides

Thank You

Thank You||5/9

Analysis Results Thank You Back Up Slides

Back Up Slides

Back Up Slides||6/9

Uranium chain

🕕 TRENIER LISBOA

Back Up Slides||7/9

All cuts

Cuts	Condition	Description
0cut	nhitsCleaned < 20	Low energy events, not reconstructed
DC	muons flag	Identifies muons
HE	(nhitsCleaned $> 3000 $ $) + 20s$	Rejects high energy events and followers
HS	(nhitsCleaned > 1200 $)$ + position	Rejects Hot Spot events and followers
FV	r < 3300	Fiducial Volume
BiPo	BiPo event = true	Rejects BiPo-like events
ITR	itr <= 0.2	In Time Ratio
NH	neckhits > 0	Events from the neck
β_{14}	$\beta_{14} > 0.1$	Isotropic variable

Table 1: Summary of all the cuts applied.

Sacrifice Table

Cuts	Cumulative Sacrifices (%)
BiPo	1.64×10^{-5}
ITR	0.744
neck hits	1.25
β_{14}	1.25

Table 2: Cumulative sacrifices based on Monte Carlo simulations of $0\nu\beta\beta$ events. Cuts are applied in the order shown.