Incoherent Diffraction Imaging with hard X-rays **Experimental Campaign Preparation**

Matilde Fernandes

Supervisors: Dr. Pablo San Claveria Prof. Marta Fajardo

Proposed goals

Main goal

Experimental work with IDI using hard X-rays at a synchrotron facility

PIC2 Project

Preparation of the experimental campaign

- Getting familiar with working principles
- Perform numerical simulations
- Design the experimental setup

29 beamlines!

* A. Somogyi, et al., "Optical design and multi-length-scale scanning spectro-microscopy possibilities at the nanoscopium beamline of synchrotron soleil," Journal of synchrotron radiation 2015

Synchrotron Radiation from infrared to X-rays

* A. Somogyi, et al., "Optical design and multi-length-scale scanning spectro-microscopy possibilities at the nanoscopium beamline of synchrotron soleil," Journal of synchrotron radiation 2015

Diffuser

Creating a PTLS

The diffuser

- $300 \text{ nm holes} \longrightarrow \text{independent emitters}$ lacksquare
- Unordered but known locations \rightarrow spatial incoherence
- 1.6 μ m thick tungsten layer $\rightarrow \pi$ phase-shift ullet

* K. Lee et al., "Direct high-resolution x-ray imaging exploiting pseudorandomness,",2023.

Pseudo-Thermal Light Source

Resolution Target

Chip design

Final Setup Design

Constrains and Conditions

CDI Simulations - FOV

Ideal FOV \longrightarrow Minimum 5 fringes visible ullet

Conclusions & Future Work

> IDI represents a significant advancement over CDI

Avoid some of CDI's core restrictions: sample support and the need for highly coherence

> The experimental campaign was prepared successfully

Theoretical necessary concepts in place

Development of a diffuser, resolution target and setup design

□ IDI Simulations

Perform detailed simulations that mimic the exact IDI setup to anticipate the experimental results at the lab during beamtime

□ Beamtime at SOLEIL synchrotron

Data acquisition at experimental phase

Following data post-processing, reconstruction, and further analysis.

Incoherent Diffraction Imaging with hard X-rays **Experimental Campaign Preparation**

Thank you for your attention!

