The Lunar Ionising Radiation Environment A Benchmark Model

January 28, 2025

Author: Bruna Lima

Supervisors: Prof. Patrícia Gonçalves Prof. Luísa Arruda

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS partículas e tecnologia

Photo Credit: ESA/Hubble & NASA

Lunar Radiation Environment

Particle	Energy (eV)	
GCRs	10 ⁸ to 10 ²⁰	
SEPs	10 ⁸ to 10 ⁹	
Albedo Particles	Up to 10 ⁸	
Other sources		

SEPs fluxes can exceed background GCRs fluxes by factors of 10³ or more!

Figure 2: Juice NavCam view of the Moon Credits: ESA/Juice/NavCam Acknowledgements: Airbus

From Mars to the Moon

dMEREM

Adapting to the Moon:

Developed by LIP's **SpaceRad** group using **Geant4**.

Simulates radiation environment at different Mars locations.

Figure 3: "Mars true-color generated image using OSIRIS" **CREDIT:** ESA & MPS for OSIRIS Team MPS/UPD/LAM/IAA/RSSD/INTA/UPM/DASP/IDA

Bruna Lima | LIP | ESA | IST | PIC 2 | January 2025

- Replace Mars' atmospheric/soil models with lunar-specific data.
- Include lunar-specific radiation sources.
- Validate with existing mission data.

From Mars to the Moon

Figure 4: "Full Moon as photographed from on board the International Space Station **CREDIT:** NASA/Astronaut Jeff Williams

Bruna Lima | LIP | ESA | IST | PIC 2 | January 2025

From Mars to the Moon

Figure 5: Geant4 Simulation Example with Moon Regolith and Proton Flux of 100 GeV

Position - x (mm) :	-9.120109676571092e-1	12-9.120132388436999e-12
Position - v (mm) :	1.083960349821405e-11	11.083963049215006e-11
Position - z (mm) :	1.479007345873014e-11	11.479011029067858e-11
Global Time (ns) :	0.01143614791999963	0.01143614791999963
Local Time (ns) :	-7.001454533324725e-1	14-7.001471969092333e-14
Proper Time (ns) :	-1.534098534712316e-1	L4-1.534102355087841e-14
Momentum Direct - x :	0.4453226691461333	0.4453226691461333
Momentum Direct – y :	-0.5292833130974934	-0.5292833130974934
Momentum Direct - z :	-0.7221820371769878	-0.7221820371769878
Momentum - x (MeV/c):	1.013318641254679	1.013318641254679
Momentum - y (MeV/c):	-1.204368618141755	-1.204368618141755
Momentum - z (MeV/c):	-1.643303993605095	-1.643303993605095
Total Energy (MeV) :	2.332142006503581	2.332142006503581
Kinetic Energy (MeV):	1.821143096503581	1.821143096503581
Velocity (mm/ns) :	292.5074555687947	292.5074555687947
Volume Name :	Regolith	Regolith
Safety (mm) :	5e-10	5e-10
Polarization - x :	0	0
Polarization — y :	0	0
Polarization - Z :	0	0
Weight :	1	1
Step Status :	AlongStep Proc.	AlongStep Proc.
Process defined Step:	eIoni	eIoni

++List of secondaries generated (x,y,z,kE,t,PID): No. of secondaries = 0

**PostStepDoIt (after all invocations):
++List of invoked processes
1) Transportation

++64Step Information Address of 64Track : 0x139f1d3f0 Step Length (mm) : -5.10009201886219e-17 Energy Deposit (MeV) : 0

StepPoint Information		PreStep	PostStep
Position - x (mm)	: -9.1201096765	571092e-12-9.1201323	388436999e-12
Position - y (mm)	: 1.08396034982	21405e-111.083963049	9215006e-11
Position - z (mm)	: 1.4790073458	73014e-111.479011029	9067858e-11
Global Time (ns)	: 0.0114361479	91999963 0.011436143	791999963
Local Time (ns)	: -7.0014545333	324725e-14-7.0014719	969092333e-14
Proper Time (ns)	: -1.5340985347	712316e-14-1.5341023	355087841e-14
Momentum Direct - x	. 0.445322669	91461333 0.44532266	691461333
Momentum Direct – y	: -0.529283313	30974934 -0.52928333	130974934
Momentum Direct - z	: -0.722182033	71769878 -0.72218203	371769878
Momentum - x (MeV/c)	: 1.01331864	41254679 1.0133186	641254679
Momentum – y (MeV/c)	-1.20436863	18141755 -1.2043686	618141755
Momentum - z (MeV/c)	· -1.64330399	93605095 -1.6433039	993605095

Objectives of dLEREM

Preliminary Validation & Expected Results

Validation Approach: Compare simulated dose rates and spectra to:

- CRaTER (LRO)
- Apollo radiation measurements
- Chandrayaan RADOM instrument
- JUICE RADEM August Earth-Moon Fly by

Expected Findings: Benchmark dLEREM against real lunar measurements.

Assess Accuracy: in predicting realistic lunar exposure conditions.

Conclusion Building a Safer Future for Space Exploration

Unify fragmented radiation data for better **understanding** and **accessibility**.

Figure 6: LUNA recreates the Moon's surface on Earth, located next to ESA's Astronaut Centre (EAC) in Cologne, Germany. CREDITS: ESA-L. Breggion

The Lunar Ionising Radiation Environment A Benchmark Model

January 28, 2025

Author: Bruna Lima

Supervisors: Prof. Patrícia Gonçalves Prof. Luísa Arruda

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS partículas e tecnologia

Photo Credit: ESA/Hubble & NASA

Extra Slides

dMEREM

- Geometry Definition and Materials;
- Primary Particle Generation;
- Event Generation & Simulation;
- Physics Processes & Interactions;
- Sensitive Detectors & Scoring Mechanisms;
- Tracking & Data Collection;
- Output & Visualization.

Radiation Spectra Simulation

Comparative flux spectra of GCRs and SEPs extracted from SPENVIS