Improving the neutrino detection at Pierre Auger Observatory

LIP Prof. Ruben Conceição Prof. Jaime Alvarez-Muñiz

David Dias

THE SEARCH FOR NEUTRINOS

 \bigcirc

Detection of very high energy neutrinos can complement other observations giving us more information over an event – multimessenger approach.

- Neutrinos have no charge, almost massless
- They can easily escape their sources
- Not deflected or absorbed during propagation towards Earth
- Can pinpoint direction of source

EXTENSIVE AIR SHOWERS

- Highly energetic particles create showers upon entering the atmosphere
- Shower has 3 components:
 - Electromagnetic
 - Hadronic
 - Muonic
- Muons are produced by the hadronic
 - component

PIERRE AUGER OBSERVATORY

- Located in Argentina
- Built to detect UHECR

0

- Neutrinos typically detected using "Earth-skimming" neutrino
 - Very effective method
 - Severe limitations to sky coverage
- Recent scintillator and radio antenna upgrades
 - Direct distinction between S_{em} and S_{μ}
 - Use these variables to distinguish vertical events
 - Low acceptance issue solved

NEW STRATEGY

- Fisher discriminant to distinguish populations within $\mbox{log}(S_{\mbox{em}})$ vs $\mbox{log}(S_{\mbox{\mu}})$ space
- Obtain neutrino detection efficiency

Calculate differential neutrino flux:

$$E_{\bullet}^{2}\frac{dN}{dE} = E^{2}\left(2\pi A\Delta E\Delta t \iint \frac{\sigma}{m}\sin\theta\,\cos\theta\,\varepsilon(E,D,\theta)d\theta dD\right)^{-1}$$

[1] Phys.Rev.D 106 (2022) 10, 102001

PREVIOUS RESULTS

Using a threshold (background rejection factor) of 10⁻⁴:

Muon neutrino:

0

Differential flux estimate: 8.68 x 10⁻⁸ GeV cm⁻² s⁻¹ sr⁻¹

Electron neutrino:

Differential flux estimate: 4.09 x 10⁻⁹ GeV cm⁻² s⁻¹ sr⁻¹

- While at a lower efficiency, muon neutrino can also contribute to the total neutrino flux
- Demonstrated the viability of vertical neutrino detection

MASTER THESIS PROPOSAL

- New idea: Use X_{max} along S_{em} and S_{μ} to increase sensitivity to neutrino detection
- Use FDs to extract e.m. longitudinal profile and fit according to USP:

 $N' = \left(1 + \frac{RX'}{L}\right)^{R^{-2}} \exp\left(-\frac{X'}{LR}\right)$

 Evident increase in neutrino-to-proton ratio for specific X_{max} bins, however for most bins (and data) the Fisher cut is inconsistent

OBJECTIVES

• Switch Fisher analysis to BDT to solve statistics problem

0

• New radio antennas being installed for Auger Prime upgrade could replace FDs, solving low duty-cycle issue as well as increasing resolution on X_{max}

• Increase detection efficiency while expanding the coverage of the sky

THANK YOU!

David Dias

2nd Cycle Integrated Project in Engineering Physics

9

LIP

 \bigcirc

Prof. Ruben Conceição

Prof. Jaime Alvarez-Muñiz

BONUS SLIDES

MUON NEUTRINO

Can we apply a similar procedure as the electron neutrino?

0

- Interaction with atmosphere produces high energy muon
- Above critical energy (~3 TeV) muon will radiate through bremsstrahlung
- Photon then generates electromagnetic cascade
- Atmospheric proton produces hadronic cascade

DIFFERENTIAL NEUTRINO FLUX

Expected neutrino count:

0

$$N = \int \Phi(E) \, \sigma(E) \, A \, \Delta t \, \varepsilon(E, D, \theta) \, \sin\theta \, \cos\theta \, dE d\theta dD \leq 1$$

Assume small energy interval with constant flux $\Phi = \frac{dN}{dE}$ and $\sigma(E) = \frac{\sigma}{m}$

$$N \approx \Phi(E) A \Delta E \Delta t \int \frac{\sigma}{m} \varepsilon(E, D, \theta) \sin\theta \cos\theta \, d\theta dD$$

Since no neutrinos have been detected N=1, differential neutrino flux:

$$E^{2}\frac{dN}{dE} = E^{2}\left(2\pi A\Delta E\Delta t\iint\frac{\sigma}{m}\sin\theta\,\cos\theta\,\varepsilon(E,D,\theta)d\theta dD\right)^{-1}$$