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If you are reading this as a web page: have fun! If you are reading this as a PDF: please visit

https://www.hep.uniovi.es/vischia/persistent/2025-03-12_LisbonMLSchoolPhysics_Unsupervised.html

to get the version with working animations
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Learn in different ways (today: unsupervised and
reinforcement l.)

―
Image by Renu Khandelwal Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 2 / 32

https://arshren.medium.com/supervised-unsupervised-and-reinforcement-learning-245b59709f68


Unsupervised learning
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Unlabelled data
We assume we only have input data  without labeled responses .

Expensive, impractical, or impossible to obtain

The goal is to discover hidden structures or patterns in the data

Applications are numerous

Dimensionality reduction

Segmentation and/or clustering

Data compression

Anomaly detection

...

X y
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Main Types of Unsupervised Learning
Clustering

Group similar instances together.

Examples: K-Means, Hierarchical Clustering, Gaussian Mixture Models.

Dimensionality Reduction

Compress data, reducing the number of features.

Examples: PCA, t-SNE, UMAP.

Density Estimation

Estimate the distribution of data (e.g., Gaussian Mixture Models).

Anomaly/Novelty Detection

Identify unusual patterns that do not conform to expected behavior.

Examples: Isolation Forest, One-class SVM.

Feature Learning

Automatically learn representations (e.g., Autoencoders).
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Clustering
Regroup data points so that points in the same cluster are "closer" (more similar) to each other than to those in other clusters.

K-Means

Hierarchical Clustering

Gaussian Mixture Models

DBSCAN
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Clustering: K-Means
1. Choose the number of clusters, 

2. Initialize the  cluster centroids 

3. Assign each data point to the nearest centroid (typically
Euclidean norm)

4. Recalculate centroids as the mean of assigned points

5. Repeat steps 3 and 4 until convergence

Objective function:

Pros: Simple, fast, widely used

Cons: Assumes spherical clusters,  choice is arbitrary,

sensitive to outliers

―
Animations by Sandipan
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Bottom-up: the agglomerative approach

1. Start with each data point in its own cluster

2. Iteratively merge the two "closest" clusters until one
cluster remains

3. Linkage criterion: measure of dissimilarity between
sets of observations as a function of the pairwise
distance between data points

Top-down: the divisive approach

1. Start with all data in one cluster

2. Recursively split clusters (e.g. choose object with max average dissimilarity, then attach to it all objects that are more
similar to it than to the remainder objects)

Dendrogram:

A tree-like structure showing how clusters are merged or split.

You can choose the cut of the dendrogram to get a desired number of clusters.

Hierarchical Clustering

―
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Expectation-Maximization (EM) algorithm iteratively
re�nes:

1. E-step: Estimate posterior probabilities of each point
belonging to each cluster.

2. M-step: Update parameters  to maximize

likelihood.

Pros: Flexible cluster shapes (covariance matrices).

Clustering with Gaussian Mixture Models
Probabilistic clustering approach modeling data as a mixture of Gaussians.

Each cluster is modeled by a Gaussian distribution: 

where  are mixing coef�cients.

―
Animation by dashee87
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Clusters are de�ned as dense zones

Observations with no close neighbours treated as noise

De�ne minimum number of elements in cluster and size of
neighbourhood

Iteratively investigate neighbourhood of all points
belonging to cluster

Convergence when all points either in a cluster or labelled as noise
 

Pros: no need to specify number of clusters, treat outliers
as noise, any shape

Cons: points at the border may be assigned to different
clusters in each execution, curse of dimensionality

Clustering with DBSCAN

―
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Dimensionality Reduction
Curse of dimensionality.

How many samples do we need to estimate , depending on assumptions on its regularity?f ∗
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Dimensionality Reduction
Curse of dimensionality.

How many samples do we need to estimate , depending on assumptions on its regularity?

 constant  need only 1 sample

 linear  need  samples

f ∗

f ∗ →

f ∗ → d
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Dimensionality Reduction
Curse of dimensionality.

How many samples do we need to estimate , depending on assumptions on its regularity?

 constant  need only 1 sample

 linear  need  samples

If  is Lipschitz, it can be demonstrated that 

Computational ef�ciency.

Data visualization.

Linear Methods

Principal Component Analysis (PCA).

Non-Linear Methods

t-SNE, UMAP

f ∗

f ∗ →

f ∗ → d

f ∗ n ∼ ϵ−d

Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 13 / 32



Principal components are the eigenvectors of the data
covariance matrix

Can be found by Singular Value Decomposition (SVD)

Somehow analogous to �nding axes of ellipsoid

Features with different units  arbitrariety (scale them �rst)

Can retain a few dimensions: dimensionality reduction

Drop directions least explaining the variance

Retain the dimensions that explain most of the variance

Dimensionality reduction: PCA
Principal Component Analysis: �nd orthornormal basis where dimensions are linearly uncorrelated

Found iteratively �nding the direction (linear combination of features) explaining the most variance

―
Image by Nicoguaro on Wikipedia and by builtin

→
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Steps for PCA

Standardize each variable

Compute covariance matrix

Compute eigenvectors of covariance matrix

Order them by eigenvalue

Select components you want to keep

Transform data in the new coordinate system

Dimensionality reduction: PCA
Iteratively, �nd the �rst one, then �nd the next one conditioned on being orthogonal to the previous one

Or simply do Single Value Decomposition (SVD)

SVD: 2D case (multivariate is just iteratively the same)

�nd the best linear �t: this shows the direction of maximum variance in the dataset

the eigenvector is the direction of that line

the eigenvalue expresses how much the data set is spread out on that line

―
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t-SNE (t-Distributed Stochastic Neighbor Embedding)

Minimizes the Kullback-Leibler divergence between the joint
probabilities of the original data and of their low-dimensional
embedding

Focusses on preserving local structure

Good for data visualization but not always for actual tasks

UMAP (Uniform Manifold Approximation and Projection)

Builds a weighted graph of the data and optimizes its layout in
lower dimensions

Preservese both local and global strucutre

Often faster, strongly adopted for visualization

Recent work hints that the two algorithms can be "morphed" into each other via "repulsion/attraction" one-dimensional
parameter

t-SNE & UMAP

―
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Autoencoders...
Learn the data itself passing by a lower-dimensional intermediate representations

Capture data generation features into a lower-dimensional space

Can use for anomaly detection

Spot objects that are different from those you have trained on (see e.g. anomaly detection in the CMS Muon chambers 1808.00911)

Can sample from the latent space to obtain random samples (generative AI)

Can denoise data, learn features, reduce dimensionality

―
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...and Variational autoencoders
Learn a space of continous representations of the inputs

―
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Reinforcement Learning
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An agent learns to make sequential decisions by
interacting with an environment.

Maximize cumulative reward over time.

A process of trial and error + delayed reward

Reinforcement learning...

―
Image by Megajuice on Wikimedia, video from YouTube

0:00
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...in Physics
"Particle Physics Model Building with Reinforcement Learning" (2103.04759)

Reward models consistent with the observed quark properties

―
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Core Reinforcement Learning concepts
The Agent is the learner/decision-maker

The agend acts with the Environment, an external system

The environment is in a certain State  at each time

The agent can execute an Action , which affects the environment

The agent receives a feedback signa, the Reward , indicating how good the action was

s

a

r
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MDP de�ned by:

: State space

: Action space

: Transition probabilities

: Reward function

: Discount factor for future rewards

Markov Decision Process (MDP)
Often build a �nite-state machine and solve with MDPs

Often dif�cult in real environments (e.g. continuous variables instead of �nite states)

―
Animation from paperspace

(S,A,P ,R, γ)

S

A

P (s ∣′ s, a)

R(s, a)

γ ∈ [0, 1]
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Policies and Value
Policy : a mapping from state to action (deterministic) or state to action probabilities (stochastic).

Value function : Expected return (sum of discounted rewards) starting from state , following policy .

Action-value function (Q-function) : Expected return starting from state , taking action , then following 

π

π(a ∣ s)

V (s)π s π

V (s) =π E  [  γ r  ∣π

t=0

∑
∞

t
t+1 s  =0 s]

Q (s, a)π s a π

Q (s, a) =π E  [  γ r  ∣π
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∑
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t
t+1 s  =0 s, a  =0 a]
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Bellman Equations
Bellman Expectation Equation for 

Bellman Optimality Equation for 

Similarly, for -functions

The Bellman Equation is often used to solve stochastic optimal control problems.

V π

V (s) =π E  [R(s, a) +a∼π γ  P (s ∣
s′

∑ ′ s, a)V (s )]π ′

V ∗

V (s) =∗ max  (R(s, a) +a γ  P (s ∣
s′

∑ ′ s, a)V (s ))∗ ′

Q

Q (s, a) =∗ R(s, a) + γ  P (s ∣
s′

∑ ′ s, a)  Q (s , a )
a′

max ∗ ′ ′
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Dynamic Programming and Value Iteration
If the MDP model  and  are known and the state space is not too large

Value Iteration: Iteratively apply Bellman updates to converge to  (and therefore )

Policy Iteration: Alternate between policy evaluation and policy improvement steps

If the environment is large or unknown, model-free methods are preferred

P R

V ∗ Q∗
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Q-Learning:

Off-policy algorithm: Learns the optimal policy regardless of the
agent’s behavior policy.

Update rule (tabular):

SARSA:

On-policy algorithm: Learns the value of the policy being carried
out.

Update rule (tabular):

where 

Model-Free Methods: Q-Learning & SARSA

―
Animation from paperspace

Q(s, a) ← Q(s, a) + α[r + γ  Q(s , a ) −
a′

max ′ ′ Q(s, a)]

Q(s, a) ← Q(s, a) + α[r + γQ(s , a ) −′ ′ Q(s, a)]
a ∼′ π(⋅ ∣ s )′
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Other paradigms
Temporal Difference (TD) Learning

Learn value functions from incomplete rollouts by bootstrapping from current estimates (i.e. update prediction before looking at the �nal outcome)

: One-step update

: a larger proportion of credit from a reward can be given to more distant states and actions (multistep look-ahead)

Requires less computation than Monte Carlo methods and often converges faster

Policy Gradient Methods

Instead of learning a value function and deriving a policy, directly learn the parameters (\theta) of a policy (\pi_\theta(a|s)).

Maximize expected return (\mathcal{J}(\theta)).

Gradient Ascent (REINFORCE, actor-critic methods)

TD(0)

TD(λ)

θ ← θ + α∇  J (θ)θ
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Combine Deep Neural Networks with Reinforcement
Learning

Deep Q-Network (DQN) Approximate  with a

neural net

Surrogate

Experience replay

Target networks

Actor-Critic Architectures: Use separate networks for
policy (actor) and value function (critic).

Deep Reinforcement Learning

―
Video by DeepMind

Q(s, a)
0:00
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Resulting Lund diagrams match with
expectations from �rst principles

Deep Q Learning in particle physics
Boosted objects decay to collimated jets reconstructed as a single jet

Fat jet grooming: remove soft wide-angle radiation not associated with the underlying hard substructure

―
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Challenges in RL
Sample Ef�ciency: Training can require large amounts of data

Exploration vs. Exploitation: Balancing trying new actions vs. capitalizing on known rewards

Partial Observability: Agents often don’t see the entire environment

Function Approximation: Instability in deep architectures

Reward Shaping: Designing reward functions that lead to desired behavior
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Now: exercise 4, and data challenge
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