Machine Learning for Physics Unsupervised Learning and Reinforcement Learning

Lisbon School on Machine Learning for Physics 2025, LIP Lisboa, Portugal

Pietro Vischia pietro.vischia@cern.ch @pietrovischia

If you are reading this as a web page: have fun! If you are reading this as a PDF: please visit

https://www.hep.uniovi.es/vischia/persistent/2025-03-12_LisbonMLSchoolPhysics_Unsupervised.html

to get the version with working animations

Learn in different ways (today: unsupervised and reinforcement I.)

Unsupervised learning

Unlabelled data

- We assume we only have input data X without labeled responses y.
 - Expensive, impractical, or impossible to obtain
- The goal is to discover hidden structures or patterns in the data
- Applications are numerous
 - Dimensionality reduction
 - Segmentation and/or clustering
 - Data compression
 - Anomaly detection
 - ° ...

Main Types of Unsupervised Learning

• Clustering

- Group similar instances together.
- Examples: K-Means, Hierarchical Clustering, Gaussian Mixture Models.
- Dimensionality Reduction
 - Compress data, reducing the number of features.
 - Examples: PCA, t-SNE, UMAP.
- Density Estimation
 - Estimate the distribution of data (e.g., Gaussian Mixture Models).
- Anomaly/Novelty Detection
 - Identify unusual patterns that do not conform to expected behavior.
 - Examples: Isolation Forest, One-class SVM.
- Feature Learning
 - Automatically learn representations (e.g., Autoencoders).

Clustering

- Regroup data points so that points in the same cluster are "closer" (more similar) to each other than to those in other clusters.
 - K-Means
 - Hierarchical Clustering
 - Gaussian Mixture Models
 - DBSCAN

Clustering: K-Means

- 1. Choose the number of clusters, ${m k}$
- 2. Initialize the k cluster centroids $\{\mu_i\}_{i=1}^k$
- 3. Assign each data point to the nearest centroid (typically Euclidean norm)
- 4. Recalculate centroids as the mean of assigned points
- 5. Repeat steps 3 and 4 until convergence
- Objective function:

$$\min_{C_1,\ldots,C_k} \sum_{i=1}^k \sum_{x \in C_i} \lVert x - \mu_i
Vert^2$$

- Pros: Simple, fast, widely used
- Cons: Assumes spherical clusters, k choice is arbitrary, sensitive to outliers

Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 7 / 32

Hierarchical Clustering

- Bottom-up: the agglomerative approach
 - 1. Start with each data point in its own cluster
 - 2. Iteratively merge the two "closest" clusters until one cluster remains
 - 3. Linkage criterion: measure of dissimilarity between sets of observations as a function of the pairwise distance between data points

- Top-down: the divisive approach
 - 1. Start with all data in one cluster
 - 2. Recursively split clusters (e.g. choose object with max average dissimilarity, then attach to it all objects that are more similar to it than to the remainder objects)
- Dendrogram:
 - A tree-like structure showing how clusters are merged or split.
 - You can choose the cut of the dendrogram to get a desired number of clusters.

Clustering with Gaussian Mixture Models

- Probabilistic clustering approach modeling data as a mixture of Gaussians.
- Each cluster is modeled by a Gaussian distribution:

$$p(x) = \sum_{i=1}^k \pi_i \mathcal{N}(x \mid \mu_i, \Sigma_i)$$

where π_i are mixing coefficients.

- Expectation-Maximization (EM) algorithm iteratively refines:
 - 1. E-step: Estimate posterior probabilities of each point belonging to each cluster.
 - 2. M-step: Update parameters π_i, μ_i, Σ_i to maximize likelihood.

Clustering with DBSCAN

- Clusters are defined as dense zones
 - Observations with no close neighbours treated as noise
- Define minimum number of elements in cluster and size of neighbourhood
- Iteratively investigate neighbourhood of all points belonging to cluster
 - Convergence when all points either in a cluster or labelled as noise
- Pros: no need to specify number of clusters, treat outliers as noise, any shape
- Cons: points at the border may be assigned to different clusters in each execution, curse of dimensionality

Dimensionality Reduction

- Curse of dimensionality.
 - How many samples do we need to estimate f^* , depending on assumptions on its regularity?

Dimensionality Reduction

- Curse of dimensionality.
 - $\circ~$ How many samples do we need to estimate f^* , depending on assumptions on its regularity?
 - $\circ \hspace{0.2cm} f^* \hspace{0.2cm} ext{constant}
 ightarrow ext{need only 1 sample}$
 - $\circ \hspace{0.2cm} f^* \hspace{0.1cm}$ linear ightarrow need d samples

Dimensionality Reduction

- Curse of dimensionality.
 - How many samples do we need to estimate f^* , depending on assumptions on its regularity?
 - $\circ \hspace{0.2cm} f^* \hspace{0.2cm} ext{constant}
 ightarrow ext{need only 1 sample}$
 - $\circ \hspace{0.2cm} f^* \hspace{0.2cm}$ linear ightarrow need d samples
 - $\circ~$ If f^* is Lipschitz, it can be demonstrated that $n\sim \epsilon^{-d}$
- Computational efficiency.
- Data visualization.
- Linear Methods
 - Principal Component Analysis (PCA).
- Non-Linear Methods
 - t-SNE, UMAP

Dimensionality reduction: PCA

- Principal Component Analysis: find orthornormal basis where dimensions are linearly uncorrelated
 - Found iteratively finding the direction (linear combination of features) explaining the most variance
- Principal components are the eigenvectors of the data covariance matrix
 - Can be found by Singular Value Decomposition (SVD)
- Somehow analogous to finding axes of ellipsoid
 - $\circ~$ Features with different units \rightarrow arbitrariety (scale them first)
- Can retain a few dimensions: dimensionality reduction
 - Drop directions least explaining the variance
 - Retain the dimensions that explain most of the variance

Dimensionality reduction: PCA

- Iteratively, find the first one, then find the next one conditioned on being orthogonal to the previous one
 - Or simply do Single Value Decomposition (SVD)
- SVD: 2D case (multivariate is just iteratively the same)
 - find the best linear fit: this shows the direction of maximum variance in the dataset
 - the eigenvector is the direction of that line
 - the eigenvalue expresses how much the data set is spread out on that line
- Steps for PCA
 - Standardize each variable
 - Compute covariance matrix
 - Compute eigenvectors of covariance matrix
 - Order them by eigenvalue
 - Select components you want to keep
 - Transform data in the new coordinate system

t-SNE & UMAP

- t-SNE (t-Distributed Stochastic Neighbor Embedding)
 - Minimizes the Kullback-Leibler divergence between the joint probabilities of the original data and of their low-dimensional embedding
 - Focusses on preserving local structure
 - Good for data visualization but not always for actual tasks

- UMAP (Uniform Manifold Approximation and Projection)
 - Builds a weighted graph of the data and optimizes its layout in lower dimensions
 - Preservese both local and global strucutre
 - Often faster, strongly adopted for visualization
- Recent work hints that the two algorithms can be "morphed" into each other via "repulsion/attraction" one-dimensional parameter

Autoencoders...

- Learn the data itself passing by a lower-dimensional intermediate representations
 - Capture data generation features into a lower-dimensional space
- Can use for anomaly detection
 - Spot objects that are different from those you have trained on (see e.g. anomaly detection in the CMS Muon chambers 1808.00911)
- Can sample from the latent space to obtain random samples (generative AI)
- Can denoise data, learn features, reduce dimensionality

...and Variational autoencoders

• Learn a space of continous representations of the inputs

Reinforcement Learning

Reinforcement learning...

- An agent learns to make sequential decisions by interacting with an environment.
 - Maximize cumulative reward over time.
 - A process of trial and error + delayed reward

... in Physics

- "Particle Physics Model Building with Reinforcement Learning" (2103.04759)
 - Reward models consistent with the observed quark properties

charges	$\mathcal{Q} = egin{pmatrix} Q = egin{pmatrix} Q_1 & Q_2 & Q_3 & u_1 & u_2 & u_3 & d_1 & d_2 & d_3 & H & \phi \ \hline q & 6 & 4 & 3 & -2 & 2 & 4 & -3 & -1 & -1 & 1 & 1 \end{pmatrix}$
$\mathcal{O}(1)$ coeff.	$ (a_{ij}) \simeq \begin{pmatrix} -1.975 & 1.284 & -1.219 \\ 1.875 & -1.802 & -0.639 \\ 0.592 & 1.772 & 0.982 \end{pmatrix} (b_{ij}) \simeq \begin{pmatrix} -1.349 & 1.042 & 1.200 \\ 1.632 & 0.830 & -1.758 \\ -1.259 & -1.085 & 1.949 \end{pmatrix} $
VEV, Value	$v_1\simeq 0.224\;,\qquad {\cal V}({\cal Q})\simeq -0.598$
charges	$\mathcal{Q} = egin{pmatrix} Q_1 & Q_2 & Q_3 & u_1 & u_2 & u_3 & d_1 & d_2 & d_3 & H & \phi \ \hline 1 & 2 & 0 & -1 & -3 & 1 & -3 & -5 & -4 & 1 & 1 \end{pmatrix}$
$\mathcal{O}(1)$ coeff.	$ (a_{ij}) \simeq \begin{pmatrix} -0.601 & 1.996 & 0.537 \\ -0.976 & -1.498 & -1.156 \\ 1.513 & 1.565 & 0.982 \end{pmatrix} (b_{ij}) \simeq \begin{pmatrix} 0.740 & -1.581 & -1.664 \\ -1.199 & -1.383 & 0.542 \\ 0.968 & 0.679 & -1.153 \end{pmatrix} $
VEV, value	$v_1\simeq 0.158\;,\qquad \mathcal{V}(\mathcal{Q})\simeq -0.621$

Core Reinforcement Learning concepts

- The Agent is the learner/decision-maker
- The agend acts with the Environment, an external system
- The environment is in a certain State s at each time
- The agent can execute an Action *a*, which affects the environment
- The agent receives a feedback signa, the Reward *r*, indicating how good the action was

Markov Decision Process (MDP)

- Often build a finite-state machine and solve with MDPs
 - Often difficult in real environments (e.g. continuous variables instead of finite states)
- MDP defined by:

$$(\mathcal{S}, \mathcal{A}, P, R, \gamma)$$

- State space
- \mathcal{A} : Action space
- $\circ \ P(s' \mid s, a)$: Transition probabilities
- $\circ R(s,a)$: Reward function
- $\circ \ \gamma \in [0,1]$: Discount factor for future rewards

Policies and Value

• Policy π : a mapping from state to action (deterministic) or state to action probabilities (stochastic).

 $\pi(a \mid s)$

• Value function $V^{\pi}(s)$: Expected return (sum of discounted rewards) starting from state s, following policy π .

$$V^{\pi}(s) = \mathbb{E}_{\pi} \Big[\sum_{t=0}^{\infty} \gamma^t r_{t+1} \mid s_0 = s \Big]$$

• Action-value function (Q-function) $Q^{\pi}(s, a)$: Expected return starting from state s, taking action a, then following π

$$Q^{\pi}(s,a) = \mathbb{E}_{\pi}\Big[\sum_{t=0}^{\infty} \gamma^t r_{t+1} \mid s_0 = s, a_0 = a \Big]$$

Bellman Equations

• Bellman Expectation Equation for V^{π}

$$V^{\pi}(s) = \mathbb{E}_{a \sim \pi} \Big[R(s,a) + \gamma \sum_{s'} P(s' \mid s,a) V^{\pi}(s') \Big]$$

• Bellman Optimality Equation for V^{st}

$$V^*(s) = max_a \Big(R(s,a) + \gamma \sum_{s'} P(s' \mid s,a) V^*(s') \Big)$$

• Similarly, for Q-functions

$$Q^*(s,a) = R(s,a) + \gamma \sum_{s'} P(s' \mid s,a) \max_{a'} Q^*(s',a')$$

The Bellman Equation is often used to solve stochastic optimal control problems.

Dynamic Programming and Value Iteration

- If the MDP model P and R are known and the state space is not too large
 - \circ Value Iteration: Iteratively apply Bellman updates to converge to V^{st} (and therefore Q^{st})
 - Policy Iteration: Alternate between policy evaluation and policy improvement steps
- If the environment is large or unknown, model-free methods are preferred

Model-Free Methods: Q-Learning & SARSA

- Q-Learning:
 - Off-policy algorithm: Learns the optimal policy regardless of the agent's behavior policy.
 - Update rule (tabular):

$$Q(s,a) \leftarrow Q(s,a) + lpha \Big[r + \gamma \max_{a'} Q(s',a') - Q(s,a) \Big]$$

• SARSA:

- On-policy algorithm: Learns the value of the policy being carried out.
- Update rule (tabular):

 $Q(s,a) \leftarrow Q(s,a) + lpha \Big[r + \gamma Q(s',a') - Q(s,a) \Big]$ where $a' \sim \pi(\cdot \mid s')$

Figure 6.9: Sarsa: An on-policy TD control algorithm.

Other paradigms

- Temporal Difference (TD) Learning
 - Learn value functions from incomplete rollouts by bootstrapping from current estimates (i.e. update prediction before looking at the final outcome)
 - $\circ TD(0)$: One-step update
 - $TD(\lambda)$: a larger proportion of credit from a reward can be given to more distant states and actions (multistep look-ahead)
 - Requires less computation than Monte Carlo methods and often converges faster
- Policy Gradient Methods
 - Instead of learning a value function and deriving a policy, directly learn the parameters (\theta) of a policy (\pi_\theta(a|s)).
 - Maximize expected return (\mathcal{J}(\theta)).
 - Gradient Ascent (REINFORCE, actor-critic methods)

 $heta \leftarrow heta + lpha
abla_ heta \mathcal{J}(heta)$

Deep Reinforcement Learning

- Combine Deep Neural Networks with Reinforcement Learning
- Deep Q-Network (DQN) Approximate Q(s,a) with a neural net
 - Surrogate
 - Experience replay
 - Target networks
- Actor-Critic Architectures: Use separate networks for policy (actor) and value function (critic).

Deep Q Learning in particle physics

- Boosted objects decay to collimated jets reconstructed as a single jet
- Fat jet grooming: remove soft wide-angle radiation not associated with the underlying hard substructure

• Resulting Lund diagrams match with expectations from first principles

Challenges in RL

- Sample Efficiency: Training can require large amounts of data
- Exploration vs. Exploitation: Balancing trying new actions vs. capitalizing on known rewards
- Partial Observability: Agents often don't see the entire environment
- Function Approximation: Instability in deep architectures
- Reward Shaping: Designing reward functions that lead to desired behavior

Now: exercise 4, and data challenge