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If you are reading this as a web page: have fun! If you are reading this as a PDF: please visit
https://www.hep.uniovi.es/vischia/persistent/2025-03-12_LisbonMLSchoolPhysics_SupervisedLearning.htmi

to get the version with working animations
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Learn in different ways

Machine Learning
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https://arshren.medium.com/supervised-unsupervised-and-reinforcement-learning-245b59709f68

Supervised Learning
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Training a model

Illustration P. Vischia, 10.5281/zenodo0.6373441
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Brain activity

INPUT X BRAIN OUTPUT
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https://www.zomato.com/blog/elements-of-scalable-machine-learning

Brain activity

INPUT BRAIN OUTPUT
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Brain Activity

OQUTPUT

INPUT X BRAIN
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https://www.zomato.com/blog/elements-of-scalable-machine-learning
https://www.twinkl.com.pa/teaching-wiki/computer

Santiago Ramon y Cajal
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https://giphy.com/gifs/reaction-9o9dh1JRGThC1qxGTJ

Simplified Neurons

Builetin of Mathematical Biology Vol. 52, No. 1/2, pp. 99115, 1990. 0092-8240/90%3.00+ 0.00
Printed in Great Britain. Pergamon Press plc
Society for Mathematical Biology

A LOGICAL CALCULUS OF THE IDEAS IMMANENT IN
NERVOUS ACTIVITY*

B WARREN S. MCCULLOCH AND WALTER PITTS
University of Tllinois, College of Medicine,
Department of Psychiatry at the Illinois Neuropsychiatric Institute,
University of Chicago, Chicago, U.S.A.

Because of the “all-or-none” character of nervous activity, neural events and the relations among
them can be treated by means of propositional logic. It is found that the behavior of every net can
be described in these terms, with the addition of more complicated logical means for nets
containing circles; and that for any logical expression satisfying certain conditions, one can find a
net behaving in the fashion it describes. It is shown that many particular choices among possible
neurophysiological assumptions are equivalent, in the sense that for every net behaving under
one assumption, there exists another net which behaves under the other and gives the same
results, although perhaps not in the same time. Various applications of the calculus are
discussed.



Perceptrons

Image from https://appliedgo.net/perceptron/
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Perceptron step by step

Linear combination of the inputs

D> Wit
J
Activation function (imitates the activation of real neurons, where a voltage peak, a spike, is generated when the injected

potential passes a threshold)
g (wo - Z wjacj)
J

Bias term, an order-zero term in the inputs (translation)

U = g(wo o Z’wﬁj)
j

In matrix form, a row-column product

§= g(wo + XTW>
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Activation Function

e Originally, the activation function was linear

glz) =it —ag e, = — 0
g(z) = —lifz=wo + > wiz; <0

e Activation function is the only chance of estimating nonlinear functions

e Otherwise, a neural network would be just a fancier linear regression model

§=g(1+ [i;r [g]) = g(1 + 321 + 225)

Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 16 / 114



Popular activation functions

Sigmoid Rectified Linear Unit (ReLU)

1 9(z) = maz(0, 2)

g’ (z) = lifz > 0,0 otherwise
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Multidimensional outputs

* 11,1, €ach one with the same formula as a single neuron—> just with an additional index

9i = g(wo; + Z W; i T;)
j
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Artificial Neural Networks

Illustration (c) P. Vischia, book in preparation Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 19/ 114



Neural network with one internal layer

e Between input and hidden layer: W)

Between hidden layer and output layer: W (2)

Output of the hidden layer neurons:

Zi = g('w(()i-) + Z wj(',li) z;)

J

Output of the network

A 2 2
g = g(w) + > w? z;)
j

The generalization to multiple outputs ; is also trivial
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Gradient Descent

e Search for the "minimum error" as a function of the values of the training paramters (weights)
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Top illustration from easyai.tech, bottom one from the MODE White Paper


https://easyai.tech/en/ai-definition/gradient-descent/
https://arxiv.org/abs/2203.13818
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Backpropagation

(a) Forward pass >

€ - o _______ (b) Backward pass

Image from Guines Baydin et al, JMLR 18 (2018) 1--43 Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 23/ 114


https://jmlr.org/papers/v18/17-468.html

Backpropagation

Empirical Loss Function

Cost function

Empirical risk

ek . .
I(W) = = > L(F(@D5 W), y*®)
=1l

Minimized by:

- j :
WO = argminyJ (W) = argminyJ (W) = - Z E(f(w(z); W),y*(z))
i=1
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Loss function comes from inference

e Decision-theoretic approach (C.P. Robert, "The Bayesian Choice")
o X:observation space
o O: parameter space

o D:decision (action) space

e Statistical inference take a decision d € D related to parameter @ € O based on observation z € X, under f(z|6)

o Typically, d consists in estimating h(@) accurately

U(6’,d) - ‘Eg7d U(’P)
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Loss function comes from inference

e Loss function: L(6,d) = —U (6, d)
o Represents intuitively the loss or error in which you incur when you make a bad decision (a bad estimation of the target function)

o Lower bound at O: avoids "infinite utility" paradoxes (St. Petersburg paradox, martingale-based stragegies)

e Generally impossible to uniformly minimize in d the loss for 8 unknown

o Need for a practical prescription to use the loss function as a comparison criterion in practice
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Frequentist loss, Bayesian loss

e Frequentist loss (risk) is integrated (averaged) on X: R(6,§) = [Eq [L(H, 5(3:))}

o () is an\textbf{estimator} of 6 (e.g. MLE)
o Compare estimators, find the best estimator based on long-run performance for all values of unknown 6

o [ssues: based on long run performance (not optimal for x ., ); repeatability of the experiment; no total ordering on the set of estimators
* Bayesian loss: is integrated on ©: p(7, d|z) = E” [L(@, d) ]w]

o qristhe prior distribution
o Posterior expected loss averages the error over the posterior distribution of 6 conditional on x4

o Can use the conditionality because s is known!

o Canalsointegrate the frequentist risk; integrated risk r(r, 5) — [0 [R(H, 5)] averaged over 6 according to 7 (total ordering)
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ANNSs and Bayesian networks

e Standard ANN training essentially is a frequentist MLE

o NN weights: true, unknown values

o Data: random variable

e Bayesian networks treat weights w as random (latent) variables, and condition on the observed data

o Obtain p(w|data) starting from prior belief 7r(w) and likelihood p(data|w)

o Predictions obtained as expectation values, E, [ f] = [ f(w)p(w|data)dw, averaging f weighting by the posterior

o Marginalization leads to essentially learning the generative model (the pdfs), leading to interpretability

Image from 10.1007/978-3-030-42553-1
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Fig. 3.4 Graphical illustration of how the evidence plays a role in investigating different model
hypotheses. The simple model H; is able to predict a small range of data with greater strength,

while the more complex model H; 1s able to represent a larger range of data, though with lower
probability. Adapted from [45, 46]
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https://doi.org/10.1007/978-3-030-42553-1

Loss function: regression

e Regression is the prototype generalization of least squares regression

e Typically, mean square error is used as a loss function

1 m
L=— i — ¥l
m;_lﬁ\y vi|”)

e Measures the average spread the residuals
e Large errors will count more (will be suppressed first, in the minimization loop)

e Sometimes composite loss functions, see data challenge
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Classification: Entropy vs cross entropy

e Cross entropy

L=—(ylog(y) + (1 —y)log(l—79))

o wherey € 0, listhetruelabel,and § € [0, 1] is the predicted probability for the positive class

S = —kp Zpi In(p;),

o where: S is the entropy, kp is the Boltzmann constant, p; is the probability of the 7-th microstate

e Prediction error vs disorder, but both linked to information content (log probabilities)

Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 30/ 114



Kullback-Leibler divergence

~

Dk1(P|Q) = Z P(3) log i)

 Additional information required to approximate P using ().
o Dxr1,(P|Q) > 0(non-negative)
o Dgr(P|Q) = Oifandonlyif P = Q

e BCE s a special case of KL for binary classification,where P = yand ) = ¢
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Negative log likelihood loss

e For m samples, the Negative log-likelihood (NLL) loss is:

1 m
oo > log P(y; | x;)
i—1

« where P(y; | x;) is the predicted probability for the true class y; for the ith sample,
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Binary vs Multiclass classification

e The sigmoid activation function maps [— o0, +00] — [0, 1]
o When doing binary classification, it can be loosely interpreted as probability p of belonging to one of the classes
o Implicitly, the probability of belonging to the other one willbe 1 — p
o When there is more than one class, the third Kolmogorov axiom ZZ p; = 1isnotenforced anymore

e Two alternative strategies

o Tweak the activation function of the output layer: the Softmax activation function comes to the rescue

o Tweak the loss function into one that forces outputs to sumup to 1

Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 33/ 114



Softmax

e Converts raw output of the classifier (logits) into numbers in the interval [0, 1] and that sumup to 1, i.e. that are interpretable
as probabilities

o Logits are typically the output of a linear layer: z; = WZTX + b;

e Givenreal numbers z = 21, 29, ..., 2, softmax is:

o Numerator expresses the relative importance of z;, denominator is the normalization factor
e~

D i1 €Y

Soltmast IF— B = )
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Properties of softmax

e Softmax imposes the Kolmogorov axioms
o Eachelement0 < Softmax(z;) < 1 (first axiom)

o Sum) "  Softmax(z;) = 1 (second and third axioms)

e |nterpret output for the predicted class y as:

il =9 | %) = Saiimesd 2] =
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How to use for multiclass classification

e Neural network with e.g. linear output layer, and cross-entropy loss encouraging high probability for the correct class
o 1;; is the one-hot encoded true label for the ¢th sample and jth class

o Qij = P(y — i) ] xi) is the softmax output

1 'm,1 nj .
L= B ZT ?Tym log(%i;)
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Numerical issues and traslation invariance

» When the logits z; have large magnitudes, the exponents in the softmax formula, e*, can easily overflow.

¢ Shift the logits:

€
Softmax(z;) = S (e
=1
e The outputisinvariant w.r.t. this operation
ezi—c ezi
— Ve

Z?:l Cipe Z?:l €%’
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Lack of scaling invariance

e Forthelogits z = [1, 2, 3|, the probabilities are

el e? e3

61+€2+€3,€1—|—€2+€3,€1—|—€2+€3

Softmax(z) = [ } ~ [0.090, 0.245, 0.665]

e Forthelogits z = (2, 4, 6], the probabilities are

[ e? et eb

Softmax(z) = ST | SFIE I ) R e

] ~ [0.0159, 0.1173, 0.8670]

e Softmax amplifies differences, and is not scaling invariant

o Used together with the loss function to penalize incorrect predictions more heavily when the model is confident but wrong (low predicted probability
for the true class)
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Which loss function to use?

o Softmaxed output (probabilities) requires a loss function that interprets its inputs as predicted probability distributions, and
measures dissimilarity between that and the true labels.

o For m samples, the NLL loss is:
m
1
E == E logP(yZ | XZ')
m <« 1
1=

e where P(yi \ xi) is the predicted probability for the true class y; for the 7th sample,

e Substituting the softmax into the NLL loss

1 m n
i — —E Z Zic — log Z ezi’k
i=1 k=1
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What if you don't want to use softmax?

o Alternatively, you can just take the model with logits, and use the (non-binary) cross entropy loss

1 m n
L=-=Y zc-log) e
mizzl 2 og;e

e where:
o z; ;isthe logit for the tth sample and jth class
o cistheindex of the correct class for the ¢th sample

o ijl e is the partition function, ensuring normalization across classes

¢ |tisthe same expression as the previous slide!!!

e Essentially here the softmax is computed within the loss function, so it is completely equivalent to:

o Apply a softmax activation function, then use the negative log likelihood loss on the predicted probabilities

o Use the cross entropy loss on the logits
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A few caveats

e This assumes each sample can belong to only one of the classes (multiclass problem)!!!

¢ |f thisis not true, the problem is a multilabel problem
o Cannot use softmax, because now the probabilities of belonging to each class must be independent

o Use other loss functions like BCEWithLogitsLoss, that treat each label separately (i.e. makes an independent binary classification problem for each label)
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Propagation Algorithm

o Initialise weights (for instance, w ~ Gaus(0,0?)

e Loop until convergence

o Compute output of the network with the current weights (forward step)

o Compute gradient 8‘2(‘?)

o Update weights (step defined by the learningrate) W < W + nﬁ

0J
9A%%

e How often to update the weights? How large a step?

Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 42/ 114



Sampling scheme

e Batch: compute on the whole training set (for large sets becomes too costly)
e Stochastic: compute on one sample (large noise, difficult to converge)

e Mini-batch: use arelatively small sample of data (tradeoff)

I | I

>8I''s m Stochastic |

3.6 — Mini-batch 1
3.4/ | ==e Batch 1

91 3.2}
3.0}

2.8}

2.6 -

2.4}
2.5 3.0 3.5 4.0 4.5
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https://agenda.irmp.ucl.ac.be/event/3738/t

Descent strategies

e Mostly nonconvex optimization: very complicated problem, convergence in general not guaranteed
¢ Nesterov momentum: big jumps followed by correction seem to help!

e Adaptive moments: gradient steps decrease when getting closer to the minimum (avoids overshooting)

Top illustration from easyai.tech, bottom one from the MODE White Paper


https://easyai.tech/en/ai-definition/gradient-descent/
https://arxiv.org/abs/2203.13818

Backpropagation summary
J(W) = %Zc( F(zD W),y D), W = argminyJ(W)

8I (W)

W<~ W +19g W

(a) Forward pass >

€ - - - L _____ (b) Backward pass

Image from Guines Baydin et al, JMLR 18 (2018) 1--43 hine Learning for Physics, 2025.03.13-14 ---45/ 114


https://jmlr.org/papers/v18/17-468.html

Jacobian and Hessian

Hij =

» H(f(x)) = J(Vf(x))

(describes local curvature)

O
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Matrix multiplication

e Neural network weights expressable as matrices

e Generalize matrix calculus to tensors (tensorflow)

e Optimize for efficient tensor calculus (e.g. GPU—TPU, computational tricks)

Input Weights Output
- n >
m=1 3_ = mé¢l
k - 4 .
- * N l.
& m
X
¥ v
\J

Figure by Gilles Louppe Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 47/ 114


https://glouppe.github.io/

Example: Google's TPUs

¢ Systolic flow

o Hide four-stage process within the matrix multiplication operation

o E.g.decoupled access/execution when reading weights

o Trick flow control into thinking inputs are read and update results at once
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https://arxiv.org/abs/1704.04760

Derive

PnagafrombGities Bagitbnet al, IMLR 18 (2018) 1--43

h==x
b1 = 4ln(1 = 1)

flz) =1y = 64x(1—2)(1 —22)%(1 — 8z +8z2)?

Manual
Differentiation

f(x):
V=X
fori=1to3
v = dxyx(1l - v)
return v

or, in closed-form,

£f(x):
return 64*xk(1-x)*((1-2%x)"2)

* (1-8*x+8*x*x) "2

Symbolic
Differentiation
of the Closed-form

Automatic
Differentiation

Numerical
Differentiation

2 (x):
(v,dv) = (x,1)
fori=1to3
(v,dv) = (d*v*(1-v), 4d*dv-8*yv*dv)
return (v,dv)

Fif

f? (x0) f (zn)

Exact
—

f(z) = 1282(1 — 2)(—8 + 162)(1 — 22)2(1 —
8z +82%)+64(1—z)(1—22)%(1 — 8z +8x2)% —

64z(1 —22)*(1— 8z +82%)* — 256z(1 —z)(1 —
2z)(1 — 8z + 8z?)?

Coding

£7(x):
return 128*x*(1 - x)*(-8 + 16%x)

*((1 - 2%x) "2)*(1 - 8*x + B*x*x)
+64x% (1 - x)*((1 - 2%x)"2)*((1

- B*x + B#x*x)"2) - (64xx*x (1 -
2%x) "2)%(1 - B*kx + Skx*x) "2 -
256%x*(1 — x)*(1 - 2%x)*(1 - 8*x

+ B*x*x) "2
f7(x0) f [Tn)
Exact
——
w7 (0
h = 0.000001
return (f(x +h) - f(x)) / h
£7(x) = f'(zp)
Approximate
L ]
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https://jmlr.org/papers/v18/17-468.html

Derivatives in machine learning

¢ Modern techniques rely heavily on full differentiability

o Variational inference

o Bijectors (e.g. normalizing flows)

¢ Numerous software efforts

° Pyro

© ProbTorch

° PyProb

o Edward

o TensorFlow Probability
o Theano

o Jax

o Dex
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Automatic Differentiation has many names

e Automatic differentiation
e Algorithmic differentiation
e AD

e Autodiff

e Algodiff

e Autograd
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Derivatives

e Derivative: sensitivity of a function value to a change in its argument
o instantaneous rate of change

o can approximate with average rate

e f:R—>R
« y = f(x)

o 9:dependent variable

o z:independent variable 10 -
e Leibniz: %
e Lagrange: f'(x)
e Newton: y

e Linear operator
(higher-order function)
in programming languages: (R — R) — (R — R)
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Partial derivatives

e fIR" 5 R

¢ Differentiate w.r.t. one independent variable
(while keeping the others constant)

z(z,y) = 2% + 3zy + o3, %:436%—3% %‘Z’y):&n%—i’)gf

o
om
T
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Gradient

e f:R*" SR Vfx) = (XL L)

Ba:l )t awn

¢ Gradient: the vector of all partial derivatives
(represents the direction with the largest rate of change)

=44 o A f(a)=5.02
— @ a=(6.7,0.7) Df(a) = 0.65 o u=(-0.00,1.000  Duf(a)=-0.65 .
u=(-0.00,1.00)  Vf(a)=(-1.99,-0.66) | [Vf(a)| = 2.09 V(a) = (-1.99, -0.66) ||Vf(a)|| = 2.09
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https://mathinsight.org/applet/gradient_directional_derivative_mountain
https://mbernste.github.io/posts/functionals/

o °
Total Derivative
e Derivative w.r.t. all variables (independent and dependent)
d df 0 0 of 0
Aecleho@) e e e b

e Accumulate all direct and indirect contributions from the partial derivatives to the total derivative
o Sum all the contributions that are responsible for the change in value of a variable

o Crucial for backpropagation
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Matrix calculus...

¢ Fundamental extension to multivariate functions

Scalar output Vector output
Scalar input R—R R — R™
Rn % R Rl} _) RI!Z

(scalar field)

Vector input

A

{

e ——
=

A

e Typical neural network: R™” — R™ (sometimes withm = 1)

e Loss function (e.g. KL divergence): R — R
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...in Machine Learning

e Neural network weights expressable as matrices

e Generalize matrix calculus to tensors (tensorflow)

e Optimize for efficient tensor calculus (e.g. GPU—TPU, computational tricks)

Input Weights Output
- n >
m=1 3_ = mé¢l
k - 4 .
- * N l.
& m
X
¥ v
\J

Figure by Gilles Louppe Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 57 /114


https://glouppe.github.io/

Jacobian and Hessian

Hij =

» H(f(x)) = J(Vf(x))

(describes local curvature)

O

o f

833,' 8wj

0 0
21 (x) oL (x)
o= | s
0 fm O fm
6%1 (x) a];n (x)
= 82f 32f 32f -
AT 5? 8% f
0z2011 (X) %g (X) O0x20x, (X
a2f' 62f. 8 f.
Lk ke (X) OHEABA) ( ) Az (X) i
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Automatic differentiation

z(z,y) = 2z + = sin(y) + y°

\_ \_ "..\/SIH{"H 1 vove s V2+Vg Vs ")
Forward mode Reverse mode
e Totheextreme, f : R — R™ e Totheextreme, f : R” — R
0 difin 0 0
e Evaluates (8_];1’ e 8f_x) e Evaluate Vf(x)(a—fl, o 8.75];)

« Computational cost of calculating J ¢ (x) for f : R" — R™ inR" x R™

O(n time(f)) O(m time(f))

Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 ---59 /114



Forward and reverse (==backprop) modes

Rev Adjoint Trace (sety = 1 to compute

RiTo Fwd Primal Trace  y/a1uein o)
Primal: independent to dependent Atomic (1.2) 3y)' Valuein (1, 2)
Adjoint (derivatives): dependent to independent operation ’ Atomic
. 3 operation
y(x) = 2z + o sin(zy) + =3
Vo = Zo 1 To = Vo 2.9093
= 1 =01 11.5839
Fovd Primal Trace ) Fwd Tangent Trace (set &y = 1 to compute B = T -+ D302/ Do o+ 2 x 9 — 2.9093
Valuein Dy ) _ o T4 X v3 = 0.9093
Atomic 192 g Valuein (1, 2) vz = 20 5 o = 04804/ Ovo B1 + 3 x cos(v1) =
operation ( ’ ) Atomic v3 = sin(v1) 0.9003 U1 = D1 + 030v3/0uv1 1 311 o 1) =
operation V4 = VU3 ’ 01 = 5005 /vt ey
o 0.9093 o U5 x 30 =12
vs = v} 3 U2 = 060v6/0v2 11
V0 = To 1 v = Zo 1 ve = V2 + v4 + 53:1_)48114/8’03 EJGX o
o . 10.9093 _ _ U4 Xvo=1
v =T 2 V1 = T1 0 V5 v4:v68v6/8v4 e x 1 =1
U5 = De0vs /Ovs 1—)6 :
v2 = 209 . . 2% 1 vg x 1 =1
v3 = sin(v1) 2 vz = 2% 0x —0.41
2 ~0. - 10.9093 T =7 1
i = vovs 0.9093 5 = thcos(v) 1% 0.9093 + 1 x v vy
.3 0.9093 V4 = VU3 + VoV3 0
v ; b = 3ty 3% 0x4
6 = V2 + V4 1 o . .
s 09093 o = + vs + s 2 +0.9093 + 0
Yy = vg 10.9093 Yy = Vg 2.9093
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Designed to be simple in software

import torch, math

x0 = torch.tensor (1., requires grad=True)
x1 torch.tensor (2., requires grad=True)
p = 2*x0 + x0*torch.sin(x1) + x1**3

print (p)

p.backward/ ()

print (x0.grad, xl.grad)

Primal: tensor (10.9093, grad fn=<AddBackward0>)

Adjoint: tensor (2.9093) tensor(l11.5839)

yielding

e Torch (and similar software) will correctly differentiate only when the atomic operations are supported within it

o Common operations are overloaded ( mul rewrittenby torch. mult )

o QOperations from libraries (math.sin ()) must be replaced by their differentiation-aware equivalents (torch.sin())
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Impressive results



https://www.youtube.com/watch?v=MqUbdd7ae54

Impressive results

Video de YouTube, cancer research


https://www.youtube.com/watch?v=mq_g7xezRW8

Differentiable Programming

Execute differentiable functions (programs) via automatic differentiation

Screenshot of Yann LeCun's facebook post

Yann LeCun @
January 5, 2018 -

OK, Deep Learning has outlived its usefulness as a buzz-phrase.
Deep Learning est mort. Vive Differentiable Programming!

Yeah, Differentiable Programming is little more than a rebranding of the modern collection Deep Learning
techniques, the same way Deep Learning was a rebranding of the modern incarnations of neural nets with
more than two layers.

But the important point is that people are now building a new kind of software by assembling networks of
parameterized functional blocks and by training them from examples using some form of gradient-based
optimization.

An increasingly large number of people are defining the networks procedurally in a data-dependent way
(with loops and conditionals), allowing them to change dynamically as a function of the input data fed to
them. It's really very much like a regular progam, except it's parameterized, automatically differentiated, and
trainable/optimizable. Dynamic networks have become increasingly popular (particularly for NLP), thanks to
deep learning frameworks that can handle them such as PyTorch and Chainer (note: our old deep learning
framework Lush could handle a particular kind of dynamic nets called Graph Transformer Networks, back in
1994. It was needed for text recognition).

People are now actively working on compilers for imperative differentiable programming languages. This is
a very exciting avenue for the development of learning-based Al.

Important note: this won't be sufficient to take us to "true" Al. Other concepts will be needed for that, such
as what | used to call predictive learning and now decided to call Imputative Learning. More on this later....

o 1.8K 186 Comments 464 Shares
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How neural networks behave
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Universal approximation theorem

Given a family of neural networks, for each function f from a certain function space, there exists a sequence of neural networks
@1, @a, . .. from the family, such that $\phi_{n}\to f}$ according to some criterion. That is, the family of neural networks is dense in
the function space.

e No prescription on how to find the sequence
e No guarantee that any specific method can find the sequence at all

» No guarantee that any finite network size is enough (e.g. "10000 neurons is enough")
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Universal approximation theorem: width

A feed-forward network with sigmoid activation functions can approximate any continuos real-valued function
o Cybenko, G.(1989)

Any failure in mapping a function comes from inadequate choice of weights or insufficient number of neurons
o Hornik et al (1989), Funahashi (1989)

Derivatives can be approximated as well as the functions, even in case of non-differentiability (e.g. piecewise differentiable
functions)

o Hornik et al (1990)

These results are valid even with other classes of activation functions
o Light (1992), Stinchcombe and White (1989), Baldi (1991), Ito (1991), etc
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Universal approximation theorem: depth

Infinite number of finite-width layers approximate arbitrary functions, if activation function is twice-differentiable
o Gripenberg (2016)

Deep RelU networks approximate smooth functions more efficiently than shallow networks
o Yarotsky (2016), Lu et al. (2017)

Hanin and Sellke (2017)

o Minimal width to approximate continuous real-valued function to any precision: dinp’u,t +1

o Any continuous function can be approximated by a deep RelU network of minimal width dinput e doutput

o With skip connections, a network of width 1 and infinite layers is a universal approximator

Kidger and Lyons (2019) extended these results to any activation function

o Generalizes for more than one output neuron
o The bound is now dinput + doutput + 2

o For most commonly used activations function, the bound is actually dmput o doutput =2
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Number of parameters

e Empirical studies: increasing number of parameters doesn't help beyond a certain point

97 | | | ! |
= 96 —e 3 convolutional
= - |
0 +—+ 3, fully connected
E 90 |- V—¥ 11, convolutional [
& o4l -
= +
S 93| | l L .
® ™ !
i ol ﬂ
01 | | | | |
0.0 0.2 0.4 0.6 0.8 1.0
Number of parameters x 108
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Depth

e Empirical studies: increasing depth tends to always result in some improvement

96.5 1 1 1 1 | | | |
96.0 . -
-
E 95.5 -
g 95.0 .
B
;g, 94.5 -
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3
S 93.5 i
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=
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Regularization

* Regularization: any modification we make to a learning algorithm that is intended to reduce its generalization error but not its
training error.

o Restriction to parameter values

o Extraterms in loss function (indirect constraint on parameter values)

e Sometimes, constraints encode prior knowledge: inductive bias
o Forinstance, CP symmetry enforced in neural networks: 2405.13524 accepted by PRD

e CAVEAT: regularization works by bias-variance trade-off

Quote from Goodfellow, Bengio, Courville, 2016 Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 ---71/ 114


https://arxiv.org/abs/2405.13524
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https://www.deeplearningbook.org/

Bias-Variance tradeoff of MSE

A 2 . A S
ED,E[(y — f(a:;D)) ] = (BlasD [f(m,D)]) + Varp [f(a:,D)] AL
where x is a data set unseen during training (test data set)

e Error caused by simplifying assumptions in the method:

Biasp [f(:v,D)] =l [f(:c,D) — f(z)]

e Variance of the method (how much it moves around its mean):

Varp [f(ac, D)} — I [(ED[,]E(QB,D)] e JE(%D))Z]

Ep [f(m’ D)} B Ey]z [y(x)]

e Optimization error (irreducible):
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Regularization: weight decay

o Tradeoff between good fitting (small MSE) and small norm (smaller slope, or fewer features with large weights)

e In Mathematics, L regularization; in statistics, "ridge regression", "Tikhonov regularization"

J(w) = MSE;qin + Awlw

\

|
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Regularization: batch normalization

e Standardize (transform by (z — Z) /var(x)) each input coming from previous layer over the minibatch

(o]

(o}

o

Image from towardsdatascience

Done for mini-batch, for batch training it would be too costly

Stabilizes response and reduces dependence among layers
Reduces also dependence on initial weight values
Works badly for small batch sizes (too much noise)

Cannot be used for recurrent networks (distributions at each timestep are different)

/ ~a

Gradmnts _(without Batch Norm)

with Batch Norm)

e
-

A

W,
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https://towardsdatascience.com/batch-norm-explained-visually-why-does-it-work-90b98bcc58a0

¢ Randomly shut down nodes in
training

o Avoids a weight to acquire too much
importance

o |nspired in genetics

Regularization: dropout

Asexual Sexual
Reproduction Reproduction
50 i
chromosomes L
P o)
. Eagi0wn) . |
2 Chromeromes \
(3
; b
= Iyyole Embryo
| I oo HChrmgnes

‘ n23pars inZiars

Images from a talk by W. Verbeke (likely originally #thelnternet) and from Goodfellow-Bengio-Courville book
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Early stopping...

e Trainuntil the validation set loss starts increasing, and pick the model corresponding to the minimum validation loss

",.5\ 0.20 ! [ I |
S e—e Training set loss
= -
= 0.15 —— Validation set loss |-
LY
8
=
E 0.10 -
©
o] )
S 0.05} -
&
Q
= 0.00 -
0 50 100 150 200 250

Time (epochs)
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...is a form of regularisation

e Early stopping limits the reachable phase space, and is therefore analogous to L2 regularization (weight decay)
o Bishop (1995a) and Sjoberg and Ljung (1995)

J(W) = MSEtrain + )\WTW

s (&

i~ — ” "'"""'--H
§ ;v § " - N
/!
ML~z
~ s [/
w1 w1
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Network structure

and inductive bias
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Convolutional Neural Networks (CNNs)

e They target spatial data (e.g. images)
o Whenever the elements of the data vector can be seen as spatially structured

o They account for strong correlations in the elements of the data vector (e.g. if pixel (24, 24) is white then all pixels around likely have bright colour)

¢ Image classification, object detection, segmentation, etc.

e Activation and loss functions mostly the same as dense
networks
o Except for more specialized tasks (e.g. style mixing)
e Special layer structure
o Convolutional Layer
o Pooling Layer
o Fully Connected (FC) Layer

Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 ---79 /114
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Convolutional Layer

e Convolution is a form of averaging

o Detect local patterns (edges, textures, shapes...)

Sl = /w(a)w(t — a)da

e When discretized, integral becomes a sum
o xinput
o w kernel: specifies how far does the averaging goes
o gfeature map

e Forimages, e.g., with kg X kw pixels and C colour
channels,

kg—1kw—-1C-1

Yij = S: S: S:X(i+m)(j+n)c - Kinne

m=—0" n=0" =0

Images from Goodfellow, Bengio, Courville, 2016

Kernel
c d
w T
g h
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v Output
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ew + fz + fw + gz + guw + hz +
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S S
o Stride (.9): step size for shifting the kernel around

o Padding (P): add a border (or fold the image on itself) to maintain
spatial dimensions
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Parameter sharing

o Kernel smaller than the input — sparse connectivity (sparse weights)
o Not simple matrix multiplication anymore

o Detect small feactures over a small number of pixels

e Simply require parameters are equal

o If they are equal, you can store only one number in memory (sometimes dramatic memory footprint reduction)

OO OO
O OO
O OO

OO OO
OONOX0.
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Sparse connectivity and receptive field

e Describe complicated interactions constructing them from simpler building blocks

ONORONONO

Images from Goodfellow, Bengio, Courville, 2016 hia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 82/ 114
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Receptive field: deeper = larger

e Direct connections are sparse, but indirect connections can extend to all (or most of) the input

OJOJONONO.
SRR
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Computational advantage

¢ Take each pixel and subtract from it the value of the pixel to the left
o |nput: 320 x 280
o OQutput: 319 x 280

e Implementation as convolution: 319 x 280 x 3 = 267960 floating point operations
o Two multiplications and one addition per pixel

e Implementation as matrix product: 320 x 280 x 319 x 280 > 77998592000 operations (Nweights = Ninput X
N output)
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Equivariance

e This specific transformation, e.g., exhibits equivariance by translations

o "The same object" moving to a different part of the input implies its representation moves by a same amount in the output (e.g. edges)
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Pooling

e Convolution done in parallel — nonlinear activation —
pooling

e Pooling: replace output at a location with a summary
statistic

o e.g., max pooling = report the maximum output in a neighbourhood

o Helps with invariance for small variations (translations)

Large response

Large response
in pooling unit in pooling unit
Large Large

response response

in detector in detector

unit 1 unit 3

LIIE|s| | b||&|s

Images from Goodfellow, Bengio, Courville, 2016

Complex layer terminology

Simple layer terminology

Next layer

Next layer

i

Convolutional Layer

Pooling stage

Pooling layer

A

A

Detector stage:
Nonlinearity
e.g., rectified linear

Detector layer: Nonlinearity
e.g., rectified linear

A

A

Convolution stage:
Affine transform

Convolution layer:
Affine transform

A

|

Input to layer

f

Input to layers
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Pooling

¢ Small translations of the input leave the output almost unchanged

POOLING STAGE

DETECTOR STAGE

POOLING STAGE

DETECTOR STAGE
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Convolutional networks
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Morphology of galaxies

. Irregular

Image from



https://link.springer.com/article/10.1007/s12145-019-00434-8

Representations of galaxies...
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..work pretty well

Testing done on the 64 Galaxy Testing Set

80
60
40 Incorrect Predctions
20 Correct Predictions
o Total Images

Eliptical SpiralGalaxy Irregular
Galaxy Galaxy

B Totalimages MW Correct Predictions W Incorrect Predictions
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Semantic representations

P 0.6 sheep
P 0.3 dog
=]
p

0.1 cat
0.0 horse

Semantic Segmentation

/-

Object Detection Instance Segmentation
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What about time?

Convolutional network: process grid of values (e.g. images)

Recurrent networks: process a sequence of values indicised by a "time" component

o Language is a sequence

Parameter sharing crucial to generalize:
o lengths unseen in training

o different positions in the sentences

Without parameter sharing, a network would have to learn all the language rules at each step of the sequence

o Very impractical

Both scale very well (thanks to parameter sharing)
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Convolutional networks for sequences?

¢ Could "link" the steps of the sequence via the convolution
e Use the same kernel at each time step

e Shallow: it links only neighbouring time steps

Recurrent network

e Use the same parameter at the same step, s() = f(s(t=1) 9)

o Very deep structure

”~
/
\
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Unfold the graph
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Vast zoology

¢ Anoutput at each time step, recurrent connections between hidden units
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https://www.deeplearningbook.org/

Vast zoology

e Anoutput at each time step, recurrent connections only from the output at one time step to the hidden units at the next time

step
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https://www.deeplearningbook.org/

Vast zoology

e Recurrent connections between hidden units, that read an entire sequence and then produce a single output
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https://www.deeplearningbook.org/

Sequences of images
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https://doi.ieeecomputersociety.org/10.1109/CVPR.2016.148

Real-time segmentation

Videos from YouTube, autonomous driving and YouTube, cancer research


https://www.youtube.com/watch?v=MqUbdd7ae54
https://www.youtube.com/watch?v=mq_g7xezRW8

Graphs Represent Structure

Molecules
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Image from Peter Battaglia
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https://indico.cern.ch/event/852553/timetable/

Graph networks

e Represent data as point clouds

e Connect data points with weight-dependent connections

¢ Train the network to find which weights are strongest s \

Nl
o Learngthe connectivity structure of the data /
N

W
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h
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CMS High-granularity calorimeter

e 6 million cells with ~ 3mm spatial resolution, over 600m? of sensors

¢ Non-projective geometry

Learning representations of irregular partlcle-detector geometry

with distance-weighted graph networks

(C))

Image from the CMS HGCAL Team
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https://www.math.tecnico.ulisboa.pt/~jmourao/seminarios/Mendes_slides.pdf

Graphs for water simulation



https://sites.google.com/view/learning-to-simulate

Plug the Physics into the Al

lllustration by Soledad Villar
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https://agenda.irmp.ucl.ac.be/event/4674/

Plug the physics into the Al: constraints
y = f(x,0)

e Encode physics knowledge (e.g. inconsistency of models) inside the loss function as a penalty term

J(w) = Loss(y,9) + Al|w|[3 + (9, @)

, \ Physically Inconsistent
Physically Inconsistent . <« Models

Models ~-_ . <k Truth T

Figure from 10.1109/TKDE.2017.2720168 Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 106 / 114


https://doi.org/10.1109/TKDE.2017.2720168

Plug the physics into the Al: network structure

e Equivariance under group transformation can e.g. enforced by convolutional layers

¢ Some implementations available in pytorch

Ty
LVl (Xl) 7 LVl (Xl)
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https://docs.dgl.ai/en/0.9.x/generated/dgl.nn.pytorch.conv.EGNNConv.html
https://doi.org/10.1109/TKDE.2017.2720168

Plug the Physics into the Al

e Physics-aware differential equations solving

Animation from 2202.06988


https://arxiv.org/abs/2202.06988

Plug the Physics into the Al

¢ Several ODE problems now solvable via neural networks

® Who needs Lorenz? @® Who needs Navier Stokes?
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“Discovering governing equations from data by sparse identification of nonlinear dynamical “Deep Hidden Physics Models: Deep Learning of Nonlinear Partial Differential Equations”
systems” Brunton, Proctor, Kutz, PNAS 2016 Raissi, JMLR 2018
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https://phiweek2018.esa.int/agenda/files/presentation224.pdf

Autoencoders

e Learnthe dataitself passing by a lower-dimensional intermediate representations

o Capture data generation features into a lower-dimensional space

e Canuse for anomaly detection

e Cansample from the latent space to obtain random samples (generative Al)
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Invertible networks
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Inference network ) Generative model
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http://127.0.0.1:8001/from%20https://arxiv.org/abs/1505.05770

Solve inverse problems ("unfolding")

e Correct detector observation noise to recover source distribution
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Figure 5: Neural Empirical Bayes for detector correction in collider physics. (a) The source distribution p(x) is
shown in blue against the estimated source distribution gy(x) in black. (b) Posterior distribution obtained with
rejection sampling, with generating source sample x indicated in red. (c) Calibration curves for each jet property
. obtained with rejection sampling on 10000 observations. In (a) and (b), contours represent the 68-95-99.7% levels.
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http://127.0.0.1:8001/from%20https://arxiv.org/abs/2011.05836

Interpretability

Images from 1903.09644
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https://arxiv.org/abs/1903.09644

That's all for this morning

This afternoon, your first dense and convolutional networks, and autoencoders
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