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If you are reading this as a web page: have fun! If you are reading this as a PDF: please visit

https://www.hep.uniovi.es/vischia/persistent/2025-03-12_LisbonMLSchoolPhysics_SupervisedLearning.html

to get the version with working animations
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Learn in different ways

―
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https://arshren.medium.com/supervised-unsupervised-and-reinforcement-learning-245b59709f68


Supervised Learning
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Training a model

―
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https://zenodo.org/doi/10.5281/zenodo.6373441


Brain activity

―
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https://www.zomato.com/blog/elements-of-scalable-machine-learning


Brain activity

―
Image from zomato, elaborated with image from (https://pixabay.com/vectors/bloc-notes-pencil-rings-1300653/)

―
pixabay
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Brain Activity

―
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https://www.zomato.com/blog/elements-of-scalable-machine-learning
https://www.twinkl.com.pa/teaching-wiki/computer


Santiago Ramón y Cajal

―
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https://www.larazon.es/madrid/20220515/ooqnk3nha5fvdk5cvphevafax4.html
https://nobelprizemuseum.se/en/synapses-science-and-art-in-spain-from-ramon-y-cajal-to-the-21st-century/


Santiago Ramón y Cajal

―
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Real neurons

―
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Real neurons

―
Image from https://appliedgo.net/perceptron/
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dt

dV
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Computationally heavy

―
Animation from giphy.com Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 12 / 114

https://giphy.com/gifs/reaction-9o9dh1JRGThC1qxGTJ


Simpli�ed Neurons
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Perceptrons

―
Image from https://appliedgo.net/perceptron/

y = g(w  +0 w  x )∑ i i
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Perceptron step by step
Linear combination of the inputs

Activation function (imitates the activation of real neurons, where a voltage peak, a spike, is generated when the injected
potential passes a threshold)

Bias term, an order-zero term in the inputs (translation)

In matrix form, a row-column product

 w  x  

j

∑ j j

g(w  +0  w  x  )
j

∑ j j

 =ŷ g(w  +0  w  x  )
j

∑ j j

 =ŷ g(w +0 X W)T

Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 15 / 114



Activation Function
Originally, the activation function was linear

 if 

 if 

Activation function is the only chance of estimating nonlinear functions

Otherwise, a neural network would be just a fancier linear regression model

g(z) = 1 z = w  +0 w  x  >=∑ i i 0
g(z) = −1 z = w  +0 w x  <∑ i i 0

 =ŷ g(1 +   ) =[x  1

x  2
]T [3

2] g(1 + 3x  +1 2x  )2
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Sigmoid Recti�ed Linear Unit (ReLU)

 if ,  otherwise

Popular activation functions

―
Illustrations (c) P. Vischia, book in preparation

g(z) =  

1 + e−z

1

g (z) =′ g(z)(1 − g(z))

g(z) = max(0, z)

g (z) =′ 1 z > 0 0
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Multidimensional outputs
, , each one with the same formula as a single neuron  just with an additional index  ŷ1   ŷ2 →

  =ŷi g(w  +0,i  w  x  )
j

∑ j,i j
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Arti�cial Neural Networks

―
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Neural network with one internal layer
Between input and hidden layer: 

Between hidden layer and output layer: 

Output of the hidden layer neurons:

Output of the network

The generalization to multiple outputs  is also trivial

W(1)

W(2)

z  =i g(w  +0,i
(1)

 w  x  )
j

∑ j,i
(1)

j

  =ŷi g(w  +0,i
(2)

 w  z  )
j

∑ j,i
(2)

j

  ŷi
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Gradient Descent
Search for the "minimum error" as a function of the values of the training paramters (weights)

―
Top illustration from easyai.tech, bottom one from the MODE White Paper

0:00
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https://easyai.tech/en/ai-definition/gradient-descent/
https://arxiv.org/abs/2203.13818


Learning

―
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Backpropagation

―
Image from Güneş Baydin et al, JMLR 18 (2018) 1--43 Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 23 / 114

https://jmlr.org/papers/v18/17-468.html


Backpropagation
Empirical Loss Function

Cost function

Empirical risk

Minimized by:

J(W) =   L(f(x ;W), y )
n

1

i=1

∑
n

(i) ∗(i)

W =0 argmin  J(W) =W argmin  J(W) =W   L(f(x ;W), y )
n

1

i=1

∑
n

(i) ∗(i)

Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 24 / 114



Loss function comes from inference
Decision-theoretic approach (C.P. Robert, "The Bayesian Choice")

: observation space

: parameter space

: decision (action) space

Statistical inference take a decision  related to parameter  based on observation , under 

Typically,  consists in estimating  accurately

X

Θ

D

d ∈ D θ ∈ Θ x ∈ X f(x∣θ)
d h(θ)

U(θ, d) = E  [U(r)]θ,d
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Loss function comes from inference
Loss function: 

Represents intuitively the loss or error in which you incur when you make a bad decision (a bad estimation of the target function)

Lower bound at 0: avoids "in�nite utility" paradoxes (St. Petersburg paradox, martingale-based stragegies)

Generally impossible to uniformly minimize in  the loss for  unknown

Need for a practical prescription to use the loss function as a comparison criterion in practice

L(θ, d) = −U(θ, d)

d θ
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Frequentist loss, Bayesian loss
Frequentist loss (risk) is integrated (averaged) on : 

 is an \textbf{estimator} of  (e.g. MLE)

Compare estimators, �nd the best estimator based on long-run performance for all values of unknown 

Issues: based on long run performance (not optimal for ); repeatability of the experiment; no total ordering on the set of estimators

Bayesian loss: is integrated on : 

 is the prior distribution

Posterior expected loss averages the error over the posterior distribution of  conditional on 

Can use the conditionality because  is known!

Can also integrate the frequentist risk; integrated risk  averaged over  according to  (total ordering)

X R(θ, δ) = E  [L(θ, δ(x))]θ

δ(⋅) θ

θ

x  obs

Θ ρ(π, d∣x) = E [L(θ, d)∣x]π

π

θ x  obs

x  obs

r(π, δ) = E [R(θ, δ)]π θ π
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ANNs and Bayesian networks
Standard ANN training essentially is a frequentist MLE

NN weights: true, unknown values

Data: random variable

Bayesian networks treat weights  as random (latent) variables, and condition on the observed data

Obtain  starting from prior belief  and likelihood 

Predictions obtained as expectation values, , averaging  weighting by the posterior

Marginalization leads to essentially learning the generative model (the pdfs), leading to interpretability

―
Image from 10.1007/978-3-030-42553-1

ω

p(ω∣data) π(ω) p(data∣ω)

E  [f ] =p f(ω)p(ω∣data)dω∫ f
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Loss function: regression
Regression is the prototype generalization of least squares regression

Typically, mean square error is used as a loss function

Measures the average spread the residuals

Large errors will count more (will be suppressed �rst, in the minimization loop)

Sometimes composite loss functions, see data challenge

L =   ∣   −
m

1

i=1

∑
m

ŷi y  ∣ )i
2
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Classi�cation: Entropy vs cross entropy
Cross entropy

where  is the true label, and  is the predicted probability for the positive class

Entropy

where:  is the entropy,  is the Boltzmann constant,  is the probability of the -th microstate

Prediction error vs disorder, but both linked to information content (log probabilities)

L = − y log(  ) + (1 − y) log(1 −  )( ŷ ŷ )

y ∈ 0, 1  ∈ŷ [0, 1]

S = −k   p  ln(p  ),B

i

∑ i i

S k  B p  i i
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Kullback-Leibler divergence

Additional information required to approximate  using .

 (non-negative)

 if and only if 

BCE is a special case of KL for binary classi�cation, where  and 

D  (P ∣Q) =KL P (i) log  

i

∑
Q(i)
P (i)

P Q

D  (P ∣Q) ≥KL 0

D  (P ∣Q) =KL 0 P = Q

P = y Q =  ŷ
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Negative log likelihood loss
For  samples, the Negative log-likelihood (NLL) loss is:

where  is the predicted probability for the true class  for the th sample,

m

L = −   logP (y  ∣
m

1

i=1

∑
m

i x  )i

P (y  ∣i x  )i y  i i
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Binary vs Multiclass classi�cation
The sigmoid activation function maps 

When doing binary classi�cation, it can be loosely interpreted as probability  of belonging to one of the classes

Implicitly, the probability of belonging to the other one will be 

When there is more than one class, the third Kolmogorov axiom  is not enforced anymore

Two alternative strategies

Tweak the activation function of the output layer: the Softmax activation function comes to the rescue

Tweak the loss function into one that forces outputs to sum up to 

[−∞, +∞] → [0, 1]
p

1 − p

 p  =∑i i 1

1

Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 33 / 114



Softmax
Converts raw output of the classi�er (logits) into numbers in the interval  and that sum up to , i.e. that are interpretable
as probabilities

Logits are typically the output of a linear layer: 

Given real numbers , softmax is:

Numerator expresses the relative importance of , denominator is the normalization factor

[0, 1] 1

z  =i w  x +i
⊤ b  i

z = z  , z  , ..., z  1 2 n

zi

Softmax(z  ) =i  , ∀i ∈
 e∑j=1

n z  j

ez  i

1, … ,n.
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Properties of softmax
Softmax imposes the Kolmogorov axioms

Each element  (�rst axiom)

Sum  (second and third axioms)

Interpret output for the predicted class  as:

0 ≤ Softmax(z  ) ≤i 1

 Softmax(z  ) =∑
i=1
n

i 1

y

P (y = i ∣ x) = Softmax(z  ) =i  

 e∑j=1
n z  j

ez  i
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How to use for multiclass classi�cation
Neural network with e.g. linear output layer, and cross-entropy loss encouraging high probability for the correct class

 is the one-hot encoded true label for the th sample and th class

 is the softmax output

y  ij i j

  =ŷij P (y = j ∣ x  )i

L = −    y  log(   )
m

1

i=1

∑
m

j=1

∑
n

ij ŷij
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Numerical issues and traslation invariance
When the logits  have large magnitudes, the exponents in the softmax formula, , can easily over�ow.

Shift the logits:

The output is invariant w.r.t. this operation

z  i ez  i

Softmax(z  ) =i  

 e∑j=1
n z  −max(z)j

ez  −max(z)i

 =
 e∑j=1

n z  −cj

ez  −ci

 , ∀c
 e∑j=1

n z  j

ez  i
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Lack of scaling invariance
For the logits , the probabilities are

For the logits , the probabilities are

Softmax ampli�es differences, and is not scaling invariant

Used together with the loss function to penalize incorrect predictions more heavily when the model is con�dent but wrong (low predicted probability
for the true class)

z = [1, 2, 3]

Softmax(z) =  ,  ,  ≈[
e + e + e1 2 3

e1

e + e + e1 2 3

e2

e + e + e1 2 3

e3 ] [0.090, 0.245, 0.665]

z = [2, 4, 6]

Softmax(z) =  ,  ,  ≈[
e + e + e2 4 6

e2

e + e + e2 4 6

e4

e + e + e2 4 6

e6 ] [0.0159, 0.1173, 0.8670]
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Which loss function to use?
Softmaxed output (probabilities) requires a loss function that interprets its inputs as predicted probability distributions, and
measures dissimilarity between that and the true labels.

For  samples, the NLL loss is:

where  is the predicted probability for the true class  for the th sample,

Substituting the softmax into the NLL loss

m

L = −   logP (y ∣
m

1

i=1

∑
m

i x  )i

P (y  ∣i x  )i y  i i

L = −   z  − log  e
m

1

i=1

∑
m ( i,c

k=1

∑
n

z  i,k )
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What if you don't want to use softmax?
Alternatively, you can just take the model with logits, and use the (non-binary) cross entropy loss

where:

 is the logit for the th sample and th class

 is the index of the correct class for the th sample

 is the partition function, ensuring normalization across classes

 

It is the same expression as the previous slide!!!

Essentially here the softmax is computed within the loss function, so it is completely equivalent to:

Apply a softmax activation function, then use the negative log likelihood loss on the predicted probabilities

Use the cross entropy loss on the logits

L = −   z  − log  e
m

1

i=1

∑
m ( i,c

j=1

∑
n

z  i,j )

z  i,j i j

c i

 e∑j=1
n z  i,j
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A few caveats
This assumes each sample can belong to only one of the classes (multiclass problem)!!!

If this is not true, the problem is a multilabel problem

Cannot use softmax, because now the probabilities of belonging to each class must be independent

Use other loss functions like BCEWithLogitsLoss, that treat each label separately (i.e. makes an independent binary classi�cation problem for each label)

Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 41 / 114



Propagation Algorithm
Initialise weights (for instance, 

Loop until convergence

Compute output of the network with the current weights (forward step)

Compute gradient 

Update weights (step de�ned by the learning rate) 

How often to update the weights? How large a step?

w ∼ Gaus(0,σ )2

 ∂W
∂J(W)

W ← W + η  ∂W
∂J(W)
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Sampling scheme
Batch: compute on the whole training set (for large sets becomes too costly)

Stochastic: compute on one sample (large noise, dif�cult to converge)

Mini-batch: use a relatively small sample of data (tradeoff)

―
Illustration from W. Verbeke Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 43 / 114

https://agenda.irmp.ucl.ac.be/event/3738/t


Descent strategies
Mostly nonconvex optimization: very complicated problem, convergence in general not guaranteed

Nesterov momentum: big jumps followed by correction seem to help!

Adaptive moments: gradient steps decrease when getting closer to the minimum (avoids overshooting)

―
Top illustration from easyai.tech, bottom one from the MODE White Paper

0:00
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https://easyai.tech/en/ai-definition/gradient-descent/
https://arxiv.org/abs/2203.13818


Backpropagation summary

―
Image from Güneş Baydin et al, JMLR 18 (2018) 1--43

J(W) =   L(f(x ;W), y ), W =
n

1

i=1

∑
n

(i) ∗(i) 0 argmin  J(W)W

W ← W + η  

∂W
∂J(W)
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Jacobian and Hessian

 

(describes local curvature)

J  =  J(x) =    ij ∂x  j

∂f  i

 (x)∂x  1

∂f  1

⋮
 (x)∂x  1

∂f  m

…

...

 (x)∂x  n

∂f  1

⋮
 (x) ∂x  n

∂f  m

 

H  =  H(x) =       ij ∂x  ∂x  i j

∂ f2

 (x)∂x  1
2

∂ f2

 (x)∂x  ∂x  2 1

∂ f2

⋮
 (x)∂x  ∂x  n 1

∂ f2

 (x)∂x  ∂x  1 2

∂ f2

 (x)∂x  2
2

∂ f2

⋮
 (x)∂x  ∂x  n 2

∂ f2

…

…

…

 (x)∂x  ∂x  1 n

∂ f2

 (x)∂x  ∂x  2 n

∂ f2

⋮
 (x)∂x  n

2
∂ f2

H(f(x)) = J(∇f(x))
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Matrix multiplication
Neural network weights expressable as matrices

Generalize matrix calculus to tensors (tensor�ow)

Optimize for ef�cient tensor calculus (e.g. GPU TPU, computational tricks)→

―
Figure by Gilles Louppe Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 47 / 114

https://glouppe.github.io/


Example: Google's TPUs
Systolic �ow

Hide four-stage process within the matrix multiplication operation

E.g. decoupled access/execution when reading weights

Trick �ow control into thinking inputs are read and update results at once

―
Images from 1704.04760 Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 48 / 114

https://arxiv.org/abs/1704.04760


Derive

―
Image from Güneş Baydin et al, JMLR 18 (2018) 1--43
―
Animation by Alec Radford Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 49 / 114

https://jmlr.org/papers/v18/17-468.html


Derivatives in machine learning
Modern techniques rely heavily on full differentiability

Variational inference

Bijectors (e.g. normalizing �ows)

Numerous software efforts

Pyro

ProbTorch

PyProb

Edward

TensorFlow Probability

Theano

Jax

Dex
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Automatic Differentiation has many names
Automatic differentiation

Algorithmic differentiation

AD

Autodiff

Algodiff

Autograd
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: dependent variable

: independent variable

Leibniz: 

Lagrange: 

Newton: 

Linear operator 
(higher-order function) 
in programming languages: 

Derivatives
Derivative: sensitivity of a function value to a change in its argument

instantaneous rate of change

can approximate with average rate

―
Animation from Julia Inozemtseva and references therein

f : R → R

y = f(x)
y

x

 dx
dy

f (x)′

 ẏ

(R → R) → (R → R)
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https://sites.google.com/a/georgiasouthern.edu/julia-inozemtseva/teaching-math-animations-and-pics#TOC-Derivative


Partial derivatives

Differentiate w.r.t. one independent variable 
(while keeping the others constant)

―
Images by Gilles Louppe

f : R →n R

z(x, y) = 2x +2 3xy + y ,  =3
∂x

∂z(x,y) 4x + 3y,  =∂y
∂z(x,y) 3x + 3y2
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https://glouppe.github.io/


Gradient

Gradient: the vector of all partial derivatives 
(represents the direction with the largest rate of change)

f : R →n R ∇f(x) = (  , ...,  )∂x  1

∂f
∂x  n

∂f

―
Image from MathInsight.org. Check other handy visualizations by Matthew N. Bernstein Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 54 / 114

https://mathinsight.org/applet/gradient_directional_derivative_mountain
https://mbernste.github.io/posts/functionals/


Total Derivative
Derivative w.r.t. all variables (independent and dependent) 

Accumulate all direct and indirect contributions from the partial derivatives to the total derivative

Sum all the contributions that are responsible for the change in value of a variable

Crucial for backpropagation

f(t,x(t), y(t)) ⟶  =dt
df

    +dt
df

∂t
∂f

  +∂x
∂f

∂t
∂x

  ∂y
∂f

∂t
∂y
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Matrix calculus...
Fundamental extension to multivariate functions

Scalar output Vector output

Scalar input

Vector input

 
(scalar �eld) 

 
(vector �eld) 

Typical neural network:  (sometimes with )

Loss function (e.g. KL divergence): 

―
Slide by Gilles Louppe

R → R R → Rm

R →n R R →n Rm

R →n Rm m = 1

R →n R
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...in Machine Learning
Neural network weights expressable as matrices

Generalize matrix calculus to tensors (tensor�ow)

Optimize for ef�cient tensor calculus (e.g. GPU TPU, computational tricks)→

―
Figure by Gilles Louppe Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 57 / 114

https://glouppe.github.io/


Jacobian and Hessian

 

(describes local curvature)

J  =  J(x) =    ij ∂x  j

∂f  i

 (x)∂x  1

∂f  1

⋮
 (x)∂x  1

∂f  m

…

...

 (x)∂x  n

∂f  1

⋮
 (x) ∂x  n

∂f  m

 

H  =  H(x) =       ij ∂x  ∂x  i j

∂ f2

 (x)∂x  1
2

∂ f2

 (x)∂x  ∂x  2 1

∂ f2

⋮
 (x)∂x  ∂x  n 1

∂ f2

 (x)∂x  ∂x  1 2

∂ f2

 (x)∂x  2
2

∂ f2

⋮
 (x)∂x  ∂x  n 2

∂ f2

…

…

…

 (x)∂x  ∂x  1 n

∂ f2

 (x)∂x  ∂x  2 n

∂ f2

⋮
 (x)∂x  n

2
∂ f2

H(f(x)) = J(∇f(x))
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Forward mode

To the extreme, 

Evaluates 

Reverse mode

To the extreme, 

Evaluate 

Computational cost of calculating  for  in 

Automatic differentiation
z(x, y) = 2x + x sin(y) + y3

f : R → Rm

(  , … ,  )∂x
∂f  1

∂x
∂f  m

f : R →n R

∇f(x)(  , … ,  )∂x  1

∂f
∂x  n

∂f

J  (x)f f : R →n Rm R ×n Rm

O(n time(f)) O(m time(f))
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Primal: independent to dependent 

Adjoint (derivatives): dependent to independent

Fwd Primal Trace  
Atomic 

operation

Value in 
Fwd Tangent Trace (set  to compute 

) 

Atomic 
operation

Value in 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fwd Primal Trace
Atomic 

operation

Value in 
Rev Adjoint Trace (set  to compute 

) 

Atomic 
operation

Value in 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Forward and reverse (==backprop) modes

y(x) = 2x  +0 x  sin(x  ) +0 1 x  1
3

(1, 2)

 =ẋ0 1
 ∂x  0

∂y
(1, 2)

v  =0 x  0

v  =1 x  1

1
2

 =v̇0  ẋ0

 =v̇1  ẋ1

1
0

v  =2 2v  0

v  =3 sin(v  )1

v  =4 v  v  0 3

v  =5 v  1
3

v  =6 v  +2 v  +4

v  5

2
0.9093
0.9093

8
10.9093

 =v̇2 2  v̇0

 =v̇3  cos(v  )v̇1 1

 =v̇4  v  +v̇0 3 v   0v̇3

 =v̇5 3  v  v̇1 1
2

 =v̇6  +v̇2  +v̇4  v̇5

2 × 1
0 × −0.41

1 × 0.9093 + 1 ×
0

3 × 0 × 4
2 + 0.9093 + 0

y = v  6 10.9093  =ẏ  v̇6 2.9093

(1, 2)

 =ȳ 1
 ∂y

∂v
(1, 2)

v  =0 x  0

v  =1 x  1

1
2

 =x̄0  v̄0

 =x̄1  v̄1

2.9093
11.5839

v  =2 2v  0

v  =3 sin(v  )1

v  =4 v  v  0 3

v  =5 v  1
3

v  =6 v  +2 v  +4

v  5

2
0.9093
0.9093

8
10.9093

 =v̄0  +v̄0  ∂v  /∂v  v̄2 2 0

 =v̄0  ∂v  /∂v  v̄4 4 0

 =v̄1  +v̄1  ∂v  /∂v  v̄3 3 1

 =v̄1  ∂v  /∂v  v̄5 5 1

 =v̄2  ∂v  /∂v  v̄6 6 2

 =v̄3  ∂v  /∂v  v̄4 4 3

 =v̄4  ∂v  /∂v  v̄6 6 4

 =v̄5  ∂v  /∂v  v̄6 6 5

 +v̄0  ×v̄2 2 = 2.9093
 ×v̄4 v  =3 0.9093

 +v̄1  ×v̄3 cos(v  ) =1

11.5839
 ×v̄5 3v  =1

2 12
 ×v̄6 1 = 1

 ×v̄4 v  =0 1
 ×v̄6 1 = 1
 ×v̄6 1 = 1

y = v  6 10.9093  =v̄6  ȳ 1
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Designed to be simple in software
import torch, math
x0 = torch.tensor(1., requires_grad=True)
x1 = torch.tensor(2., requires_grad=True)
p = 2*x0 + x0*torch.sin(x1) + x1**3
print(p)
p.backward()
print(x0.grad, x1.grad)

yielding

Primal: tensor(10.9093, grad_fn=<AddBackward0>)
Adjoint: tensor(2.9093) tensor(11.5839)

Torch (and similar software) will correctly differentiate only when the atomic operations are supported within it

Common operations are overloaded (__mul__ rewritten by torch._mult_)

Operations from libraries (math.sin()) must be replaced by their differentiation-aware equivalents (torch.sin())
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Impressive results

―
Videos from YouTube, autonomous driving

0:00

Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 62 / 114

https://www.youtube.com/watch?v=MqUbdd7ae54


Impressive results

―
Video de YouTube, cancer research

0:00
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https://www.youtube.com/watch?v=mq_g7xezRW8


Differentiable Programming
Execute differentiable functions (programs) via automatic differentiation

―
Screenshot of Yann LeCun's facebook post Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 64 / 114

https://www.facebook.com/yann.lecun/posts/10155003011462143


How neural networks behave
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Universal approximation theorem
Given a family of neural networks, for each function  from a certain function space, there exists a sequence of neural networks 

 from the family, such that $\phi_{n} \to f}$ according to some criterion. That is, the family of neural networks is dense in

the function space.

 

No prescription on how to �nd the sequence

No guarantee that any speci�c method can �nd the sequence at all

No guarantee that any �nite network size is enough (e.g. "10000 neurons is enough")

f

ϕ  ,ϕ  , …1 2
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Universal approximation theorem: width
A feed-forward network with sigmoid activation functions can approximate any continuos real-valued function

Cybenko, G. (1989)

Any failure in mapping a function comes from inadequate choice of weights or insuf�cient number of neurons

Hornik et al (1989), Funahashi (1989)

Derivatives can be approximated as well as the functions, even in case of non-differentiability (e.g. piecewise differentiable
functions)

Hornik et al (1990)

These results are valid even with other classes of activation functions

Light (1992), Stinchcombe and White (1989), Baldi (1991), Ito (1991), etc
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Universal approximation theorem: depth
In�nite number of �nite-width layers approximate arbitrary functions, if activation function is twice-differentiable

Gripenberg (2016)

Deep RelU networks approximate smooth functions more ef�ciently than shallow networks

Yarotsky (2016), Lu et al. (2017)

Hanin and Sellke (2017)

Minimal width to approximate continuous real-valued function to any precision: 

Any continuous function can be approximated by a deep RelU network of minimal width 

With skip connections, a network of width  and in�nite layers is a universal approximator

Kidger and Lyons (2019) extended these results to any activation function

Generalizes for more than one output neuron

The bound is now 

For most commonly used activations function, the bound is actually 

d  +input 1

d  +input d  output

1

d  +input d  +output 2

d  +input d  +output 2
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Number of parameters
Empirical studies: increasing number of parameters doesn't help beyond a certain point

―
Images from Goodfellow, Bengio, Courville, 2016 Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 69 / 114

https://www.deeplearningbook.org/


Depth
Empirical studies: increasing depth tends to always result in some improvement

―
Images from Goodfellow, Bengio, Courville, 2016 Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 70 / 114

https://www.deeplearningbook.org/


Regularization
Regularization: any modification we make to a learning algorithm that is intended to reduce its generalization error but not its
training error.

Restriction to parameter values

Extra terms in loss function (indirect constraint on parameter values)

Sometimes, constraints encode prior knowledge: inductive bias

For instance, CP symmetry enforced in neural networks: 2405.13524 accepted by PRD

CAVEAT: regularization works by bias-variance trade-off

―
Quote from Goodfellow, Bengio, Courville, 2016 Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 71 / 114

https://arxiv.org/abs/2405.13524
https://journals.aps.org/prd/accepted/2c07bQ5dF6e1123fb7cc3b314b16fc25075a58554
https://www.deeplearningbook.org/


Bias-Variance tradeoff of MSE

where  is a data set unseen during training (test data set)

Error caused by simplifying assumptions in the method:

Variance of the method (how much it moves around its mean):

Optimization error (irreducible):

E  [(y −D,ϵ  (x;D)) ] =f̂
2 ( Bias  [  (x;D)]) +D f̂

2
Var  [  (x;D)] +D f̂ σ2

x

Bias  [  (x;D)] := E  [  (x;D) − f(x)] = E  [  (x;D)] − E  [y(x)]D f̂ D f̂ D f̂ y∣x

Var  [  (x;D)] :=D f̂ E  [(E  [  (x;D)] −D D f̂  (x;D)) ]f̂
2

σ =2 E [(y −y  ) ]
E [y]y∣x

 f(x) 2
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Regularization: weight decay
Tradeoff between good �tting (small MSE) and small norm (smaller slope, or fewer features with large weights)

In Mathematics,  regularization; in statistics, "ridge regression", "Tikhonov regularization"

―
Images from Goodfellow, Bengio, Courville, 2016

L2

J(w) = MSE  +train λw wT
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Regularization: batch normalization
Standardize (transform by ) each input coming from previous layer over the minibatch

Done for mini-batch, for batch training it would be too costly

Stabilizes response and reduces dependence among layers

Reduces also dependence on initial weight values

Works badly for small batch sizes (too much noise)

Cannot be used for recurrent networks (distributions at each timestep are different)

―
Image from towardsdatascience

(x− )/var(x)x̄
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https://towardsdatascience.com/batch-norm-explained-visually-why-does-it-work-90b98bcc58a0


Randomly shut down nodes in
training

Avoids a weight to acquire too much
importance

Inspired in genetics

Regularization: dropout

―
Images from a talk by W. Verbeke (likely originally #theInternet) and from Goodfellow-Bengio-Courville book Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 75 / 114

https://agenda.irmp.ucl.ac.be/event/3738/
https://www.deeplearningbook.org/contents/regularization.html


Early stopping...
Train until the validation set loss starts increasing, and pick the model corresponding to the minimum validation loss

―
Images from Goodfellow, Bengio, Courville, 2016 Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 76 / 114

https://www.deeplearningbook.org/


...is a form of regularisation
Early stopping limits the reachable phase space, and is therefore analogous to L2 regularization (weight decay)

Bishop (1995a) and Sjöberg and Ljung (1995)

―
Images from Goodfellow, Bengio, Courville, 2016

J(w) = MSE  +train λw wT
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https://www.deeplearningbook.org/


Network structure
and inductive bias
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Activation and loss functions mostly the same as dense
networks

Except for more specialized tasks (e.g. style mixing)

Special layer structure

Convolutional Layer

Pooling Layer

Fully Connected (FC) Layer

Convolutional Neural Networks (CNNs)
They target spatial data (e.g. images)

Whenever the elements of the data vector can be seen as spatially structured

They account for strong correlations in the elements of the data vector (e.g. if pixel  is white then all pixels around likely have bright colour)

Image classi�cation, object detection, segmentation, etc.

―
Image from opensea

(24, 24)
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https://opensea.io/es/assets/ethereum/0x495f947276749ce646f68ac8c248420045cb7b5e/106193816756882454311635148036298702300189172230297614362597037760145707237377


Convolution is a form of averaging

Detect local patterns (edges, textures, shapes...)

When discretized, integral becomes a sum

 input

 kernel: speci�es how far does the averaging goes

 feature map

For images, e.g., with  pixels and  colour

channels,

The output has size 

Stride ( ): step size for shifting the kernel around

Padding ( ): add a border (or fold the image on itself) to maintain
spatial dimensions

Convolutional Layer

―
Images from Goodfellow, Bengio, Courville, 2016

s(t) = x(a)w(t −∫ a)da

x

w

s

k  ×H k  W C

Y  =ij    X  ⋅
m=0

∑
k  −1H

n=0

∑
k  −1W

c=0

∑
C−1

(i+m)(j+n)c K  mnc

 +
S

H+2P−k  H 1 ×  +
S

W+2P−k  W 1
S

P
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Parameter sharing
Kernel smaller than the input  sparse connectivity (sparse weights)

Not simple matrix multiplication anymore

Detect small feactures over a small number of pixels

Simply require parameters are equal

If they are equal, you can store only one number in memory (sometimes dramatic memory footprint reduction)

―
Images from Goodfellow, Bengio, Courville, 2016

→
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https://www.deeplearningbook.org/


Sparse connectivity and receptive �eld
Describe complicated interactions constructing them from simpler building blocks

―
Images from Goodfellow, Bengio, Courville, 2016 Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 82 / 114

https://www.deeplearningbook.org/


Receptive �eld: deeper = larger
Direct connections are sparse, but indirect connections can extend to all (or most of) the input

―
Images from Goodfellow, Bengio, Courville, 2016 Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 83 / 114

https://www.deeplearningbook.org/


Computational advantage
Take each pixel and subtract from it the value of the pixel to the left

Input: 

Output: 

Implementation as convolution:  �oating point operations

Two multiplications and one addition per pixel

Implementation as matrix product:  operations (

)

―
Images from Goodfellow, Bengio, Courville, 2016

320 × 280

319 × 280

319 × 280 × 3 = 267960

320 × 280 × 319 × 280 > 77998592000 Nweights = Ninput×
Noutput
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Equivariance
This speci�c transformation, e.g., exhibits equivariance by translations

"The same object" moving to a different part of the input implies its representation moves by a same amount in the output (e.g. edges)

―
Images from Goodfellow, Bengio, Courville, 2016 Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 85 / 114

https://www.deeplearningbook.org/


Convolution done in parallel  nonlinear activation 
pooling

Pooling: replace output at a location with a summary
statistic

e.g., max pooling = report the maximum output in a neighbourhood

Helps with invariance for small variations (translations)

Pooling

―
Images from Goodfellow, Bengio, Courville, 2016

→ →
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Pooling
Small translations of the input leave the output almost unchanged

―
Images from Goodfellow, Bengio, Courville, 2016 Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 87 / 114

https://www.deeplearningbook.org/


Convolutional networks

 

―
Images from tue.nl and Yann LeCun's LeNet Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 88 / 114

http://parse.ele.tue.nl/education/cluster0
http://yann.lecun.com/exdb/lenet/index.html


Morphology of galaxies

―
Image from Earth Science Informatics volume 13, pages 601–617 (2020) Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 89 / 114

https://link.springer.com/article/10.1007/s12145-019-00434-8


Representations of galaxies...

 
―
Image from Earth Science Informatics volume 13, pages 601–617 (2020) Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 90 / 114

https://link.springer.com/article/10.1007/s12145-019-00434-8


...work pretty well

―
Image from Earth Science Informatics volume 13, pages 601–617 (2020) Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 91 / 114

https://link.springer.com/article/10.1007/s12145-019-00434-8


Semantic representations

―
Image from ai-pool.com Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 92 / 114

https://ai-pool.com/d/could-you-explain-me-how-instance-segmentation-works


What about time?
Convolutional network: process grid of values (e.g. images)

Recurrent networks: process a sequence of values indicised by a "time" component

Language is a sequence

Parameter sharing crucial to generalize:

lengths unseen in training

different positions in the sentences

Without parameter sharing, a network would have to learn all the language rules at each step of the sequence

Very impractical

Both scale very well (thanks to parameter sharing)
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Convolutional networks for sequences?
Could "link" the steps of the sequence via the convolution

Use the same kernel at each time step

Shallow: it links only neighbouring time steps

Recurrent network
Use the same parameter at the same step, 

Very deep structure

―
Images from Goodfellow, Bengio, Courville, 2016

s =(t) f(s , θ)(t−1)
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https://www.deeplearningbook.org/


Unfold the graph

―
Images from Goodfellow, Bengio, Courville, 2016

s =(3) f(s , θ) =(2) f(f(s , θ), θ)(1)
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https://www.deeplearningbook.org/


Vast zoology
An output at each time step, recurrent connections between hidden units

―
Images from Goodfellow, Bengio, Courville, 2016 Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 96 / 114

https://www.deeplearningbook.org/


Vast zoology
An output at each time step, recurrent connections only from the output at one time step to the hidden units at the next time
step

―
Images from Goodfellow, Bengio, Courville, 2016 Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 97 / 114

https://www.deeplearningbook.org/


Vast zoology
Recurrent connections between hidden units, that read an entire sequence and then produce a single output

―
Images from Goodfellow, Bengio, Courville, 2016 Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 98 / 114

https://www.deeplearningbook.org/


Sequences of images

―
Picture from 10.1109/CVPR.2016.148 Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 99 / 114

https://doi.ieeecomputersociety.org/10.1109/CVPR.2016.148


Real-time segmentation

―
Videos from YouTube, autonomous driving and YouTube, cancer research

0:00

0:00
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https://www.youtube.com/watch?v=MqUbdd7ae54
https://www.youtube.com/watch?v=mq_g7xezRW8


Graphs Represent Structure

―
Image from Peter Battaglia Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 101 / 114

https://indico.cern.ch/event/852553/timetable/


Connect data points with weight-dependent connections

Train the network to �nd which weights are strongest

Learng the connectivity structure of the data

Graph networks
Represent data as point clouds

―
Image by me Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 102 / 114



CMS High-granularity calorimeter
 with  spatial resolution, over  of sensors

Non-projective geometry

―
Image from the CMS HGCAL Team

6 million cells  ∼ 3mm 600m2
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https://www.math.tecnico.ulisboa.pt/~jmourao/seminarios/Mendes_slides.pdf


Graphs for water simulation

―
Video by Peter Battaglia's team

0:00
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https://sites.google.com/view/learning-to-simulate


Plug the Physics into the AI

―
Illustration by Soledad Villar Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 105 / 114

https://agenda.irmp.ucl.ac.be/event/4674/


Plug the physics into the AI: constraints

Encode physics knowledge (e.g. inconsistency of models) inside the loss function as a penalty term

―
Figure from 10.1109/TKDE.2017.2720168

 =ŷ f(x, θ)

J(w) = Loss(y,  ) +ŷ λ∣∣w∣∣  +2
2 γΩ(  , Φ)ŷ
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https://doi.org/10.1109/TKDE.2017.2720168


Plug the physics into the AI: network structure
Equivariance under group transformation can e.g. enforced by convolutional layers

Some implementations available in pytorch

―
Figure from 10.1109/TKDE.2017.2720168 Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 107 / 114

https://docs.dgl.ai/en/0.9.x/generated/dgl.nn.pytorch.conv.EGNNConv.html
https://doi.org/10.1109/TKDE.2017.2720168


Plug the Physics into the AI
Physics-aware differential equations solving

―
Animation from 2202.06988

0:00
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https://arxiv.org/abs/2202.06988


Plug the Physics into the AI
Several ODE problems now solvable via neural networks

―
Figure by G. Camps-Valls Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 109 / 114

https://phiweek2018.esa.int/agenda/files/presentation224.pdf


Autoencoders
Learn the data itself passing by a lower-dimensional intermediate representations

Capture data generation features into a lower-dimensional space

Can use for anomaly detection

Can sample from the latent space to obtain random samples (generative AI)

―
Figure from... Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 110 / 114



Invertible networks

―
Images from Rezende and Mohamed, 1505.05770 Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 111 / 114

http://127.0.0.1:8001/from%20https://arxiv.org/abs/1505.05770


Solve inverse problems ("unfolding")
Correct detector observation noise to recover source distribution

―
Images from 2011.05836 Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 112 / 114

http://127.0.0.1:8001/from%20https://arxiv.org/abs/2011.05836


Interpretability

 

―
Images from 1903.09644 Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 113 / 114

https://arxiv.org/abs/1903.09644


That's all for this morning
This afternoon, your �rst dense and convolutional networks, and autoencoders
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