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If you are reading this as a web page: have fun! If you are reading this as a PDF: please visit
https://www.hep.uniovi.es/vischia/persistent/2025-03-12_LisbonMLSchoolPhysics_Intro.html

to get the version with working animations
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Organizational bits
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Organization: thanks Michele!!!

n\\\\\ : Al

Michele Gallinaro

e Also thanks to the administrative staff (Natalia Antunes, Jodo Pedro Santos)
e Also thanks to the IT staff (Mario David, Nuno Dias, José Aparicio, )

¢ Not many thanks to the building administration, which makes finding a proper room and all IT things ultradifficult by
centralizing many aspects
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Instructors

Pietro Vischia

Ramon y Cajal senior researcher at the Universidad de Oviedo and ICTEA (Spain), Adjunct Professor at
IITM. Graduated in 2016 from IST. He is the coordinator of the MODE (Machine-Learning-Optimized Design
of Experiments) Collaboration, and the Machine Learning Coordinador of the CMS Experiment at CERN.
Specialist in Machine Learning applied to High Energy Physics. Researcher in high-dimensional spaces via
gradient descent, eventually powered by quantum algorithms, and on the extension of machine learning
methads to realistic neurons with spiking networks, to be then implemented in neuromorphic hardware
devices. Within CMS, he focusses on plugging inductive bias in machine learning algorithms for standard
model Higgs physics (including the 2018 observation of the ttH process) and beyond-the-standard-model
new physics searches in the Top, Higgs, and vector boson sectors. More info at https://vischia.github.io/.

Inés Ochoa

Researcher at the Laboratory of Instrumentation and Experimental Particle Physics in Portugal. Graduated
in 2015 from University College London. Particle physicist in the ATLAS Collaboration, with a focus on
searches for new physics via unsupervised learning techniques and developing new algorithms for
measuring Higgs boson properties. Expertise in b-tagging and jet substructure, in online and offline
systems. Newly appointed co-coordinator of the HEP Software Foundation Reconstruction & Software
Triggers group. More info at https://inesochoa.github.io/.

Cristovao Beirao da Cruz e Silva

Researcher at the Laboratory of Instrumentation and Experimental Particle Physics in Portugal. Graduated
in 2016 from IST. Currently a particle physicist in the CMS collaboration. His research interests focus on
detector R&D and the development of precision timing detectors, particularly for the PPS2 upgrade for the
HL-LHC. He has additional expertise in data analysis using machine learning techniques, having
contributed to the search for the Higgs boson decaying to two photons and SUSY searches with LHC data,
particularly the search for the supersymmetric partner of the tau lepton and the search for the
supersymmetric partner of the top quark in the compressed mass scenario.
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Practical information

e For anyinquiries, ask Michele or one of the instructors during coffee break, or write to lisbon-ml-workshop@cern.ch

¢ Inline with yesterday's email, we assume you have downloaded the data files for the exercises using the instructions at
https://indico.lip.pt/event/1909/page/232-course-material-please-read

VERY IMPORTANT

» Please check if you have wifi connection via eduroam: if you do not, please approach us at the beginning of the coffee break,
so that during the rest of the morning we can have a temporary wifi account created for you, that you will use for the exercises.
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class: section

Why Machine Learning in Physics
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Nobel Prize in Physics 2040

8 October 2024

The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Physics
2024 to

John J. Hopfield
Princeton University, NJ, USA

Geoffrey E. Hinton
University of Toronto, Canada

“for foundational discoveries and inventions that enable machine learning with artificial neural
networks”

They trained artificial neural
networks using physics
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We Try to Understand the Universe

History of the Universe
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Image from



https://home.cern/news/series/lhc-physics-ten/recreating-big-bang-matter-earth

1954: CERN is
founded

I

On 10 June 1955, CERN Director-General, Felix Bloch, laid the foundation stone on the Laboratory site,

o watched by Max Petitpierre, the President of the Swiss Confederation. (Image: CERN)
Image from the CERN archives


https://home.cern/about/who-we-are/our-history

1964: CERN's nursery

CERN/P! 186.4.64

R

As well as firemen, cleaners and transport staff, teachers from the
CERN nursery school and girl guides from the international troupe at
Ferney-Voltaire helped to look after the children. The Geneva
authorities kindly lent the playground equipment.

Image from


https://cds.cern.ch/record/1728671/files/vol4-issue5.pdf

Our mission

Our mission is to:

e performjworld-class researchlin fundamental physics.
e provide a unique range ofparticle accelerator facilitiesithat enable research at the

forefront of human knowledge, in an environmentally responsible and sustainable way.

. from all over the world to push the frontiers of science and technology, for
the benefit of all.

. |train new éenerationslof physicists, engineers and technicians, andlengage all citizensl

in research and in the values of science.
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A vocation for recycling

Image from 10.1103/PhysRevSTAB.16.054801
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Existing CERN accelerator complex with Large Hadron Collider (LHC), Super Proton Synchrotron (SPS), Proton
Synchrotron (PS), Antiproton Decelerator (AD), Low Energy lon Ring (LEIR), Linear Accelerators (LINAC), CLIC
Test Facility (CTF3), CERN to Gran Sasso (CNGS), Isotopes Separation on Line (ISOLDE), and neutrons Time

of Flight (n-ToF).
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Discover!

Image from the Nes

b ool


https://www.nytimes.com/2012/07/05/science/cern-physicists-may-have-discovered-higgs-boson-particle.html

Keep rediscovering!

Image from some CMS Analysis
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Our latest Nature paper

(strong ICTEA contrib!)
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https://doi.org/10.1038/s41586-022-04892-x

Al the eternal buzzword?

o Artificial Intelligence (Al)
e Machine Learning (ML)

o Statistical Learning
Deep Learning + Add comparison

@ Artificial Intelligen ... ®  Machine Learning
Search term Search term Search term
All categories ¥ Web Search ¥

Worldwide ¥ 2004 - present v
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https://trends.google.com/trends/explore?date=all&q=AI,Machine%20Learning,Artificial%20Intelligence

Al the eternal buzzword?

o Artificial Intelligence (Al)
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What do we do

First principle, quantum
theoretical model

Colliders collecting 40
million events/s

Detectors with 100 million
readout channels

Massive theory-driven
simulation codes

Complex reconstruction chain:
from low-level readouts to high-
level physics objects

19.7 1b” (8 TeV) + 5.1 b (7 TeV)

g uiome 15 s am

§ 2:?\\\ o e

- e Sophisticated final statistical
5 o B analysis
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https://indico.nikhef.nl/event/4875/contributions/21153/attachments/8264/11798/DeepLearning_EUCAIFCon_Amsterdam_2024_v2.pdf

Where we can plug Al

Highlight symmetries,
eorem proofing, model
simplification

Online control, design of
= new accelerators

Al-learned MonteCarlos
surrogates,
differentiable simulators

Reconstruction of physics objects,
tagging of reconstructed objects

19.7 1b” (8 TeV) + 5.1 b (7 TeV)
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£ . Unfolding, anomaly

2 k&m““u‘, . . .

5 o ~-1 detection, signal extraction
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Most theory papers are symbolic

e Al-assisted theorem proofing

[de Moura et al., 2015] ¢ [Barras et al., 1997]

-

Isabelle
[Nipkow et al., 2002]

https://machine-learning-for-theorem-proving.github.io/ (NeurlPS 2023)

¢ |LLMs to solve mathematical problems

Article \ Open access \ Published: 14 December 2023

Mathematical discoveries from program search with
large language models

Bernardino Romera-Paredes &3, Mohammadamin Barekatain, Alexander Novikov, Matej Balog, M. Pawan

o Simplify polylogarithms (no classical algorithm available, LLMs 91% success!)

Dutach:
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Most theory papers are symbolic

¢ 5-point MHV amplitude w/ Feynman diagrams: from 1990 tokens to 27 tokens
<12>2<15>2K2zad3ad>[12] [1a4] [15] [23] [25] + <12>3ZK15>23><3ad<as>[12] [15] [=23] [=25] [34]@

(15)2(23)(34)2(45)2[12]2 [r5] [=23] [a5]

Feed to mnetwork

pPromising
Pairs

[ S —

: transformer

L ‘\ i plified form
of 2 terms

iterations

<1=2>>
T K1IS5>{(=Z3y{3ay{as5>

Solve string theory &

e Find nontrivial Calaby-Yau metrics (1910.08605) Compactify on a uses metric compute

e Look for fixed points of metric flows (2310.19870) Calabi-Yau manifold spectrum

e Predict rank of gauge group (1707.00655, prediction later /\ —
proven) —

refine to find SM

Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 22/ 119

Examples from Matthew Schwartz


https://indico.nikhef.nl/event/4875/contributions/21152/attachments/8268/11791/EuCAIFcon2024-Schwartz.pdf

Beyond symbolic manipulation

e Can Al find interesting questions?

Article | Open access | Published: 10 February 2024

t The current state of artificial intelligence generative
language models is more creative than humans on
divergent thinking tasks

e Can Al models teach themselves to be good physicists
using data?

 If Al understands physics (can calculate everything) but Kent £ Hubert I, Kim . Awa & Daa L. Zabelna
We do not’ do We Consider it an acceptable Scientific Reports 14, Article number: 3440 (2024) | Cite this article
"undel‘Standing"? 11k Accesses @ 252 Altmetric | Metrics
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Accelerate accelerators

¢ Daily operation and control have huge impact on resources and efficiency

o Beam scheduling: changing supercycle requires 20-100 clicks (2-25min) about 60 times/day

o 15% of the yearly cost of SPS fixed target cycle employed for "waste" cycles to mitigate hysteresis problems

e What if we could make them fully automatic (like e.g. Space telescopes)?

s
]

Competiﬁg
objectives

W

External

Constraints

A

Repeatability

Operator inputs

/

Accelerator control
algorithm

\

conditions errors

Operational complexities

Accelerated beam

Image from 2312.05667

Control parameters

magnet currents, RF parameters,

laser settings

f(z)

1
1 .
| Physics
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- | .--- (O
O
Limited, noisy beam measurements Measurement
transverse profile monitors, BPMs, ICTs,
quadrupole scans, TDCs database

Goal: specific beam
characteristics at the target
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Accelerate accelerators

e Hierarchical, Al-controlled autonomous systems

e Optimize trasmission to target in a system with 5 DoF, using Bayesian Optimization

= == Constant Prior = NN, r=0.3, MAE=0.3
= T t
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Doublet ~ 751
C ¢
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Bends % 25 4 _~
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Triplet ' ' ' '
P 0 10 20 30

Step
Courtesy T. Boltz et al, arXiv:2403.03225
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Trigger

e Pack Al models into the L1 trigger — improve selection criteria

o AtICTEA!

e Cando e.g. anomaly detection, and online graph building

Probabilistic
Decoder

Probabilistic
Encoder

CMS Experiment at the LHC, CERN
Data recorded: 2023-May-24 01:42:17.826112 GMT
. Run/Event / LS: 367883 / 374187302 / 159

Neu et al 2307.07289

or Physics, 2025.03.13-14 ---
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Simulations: the problem

¢ Monte Carlo simulations are very costly

e The more data we collect, the more simulated events we need

Qe

Eve

nt-level kinematics

Diffusion models:
Gradually add Gaussian
noise and then reverse

Particle-ID and charge : ’ t
isElectron, isPhoton, .. I
Kinematics : i
P ¢ muon / i
L3 I
| electron I=
—» charged hadron /—ﬂ i
— =
— I o
GAN: Adversarial < | 5 Discriminator IE’ [Generator| | | ]'
taining D(x) G(z) x F
= = ~ L E
A _
: VAE: maximize Encoder ] |Z| [ Decoder 7 £
variational lower bound a6(2x)_ _olxlz) £
Trajectory displacement : —~ Baaee— == = \(’
dy : closest approach to PV in xy-plane — z “ayeI‘S]V T ———— £ %
d, : 7 position where d, is evaluated
s Flow Inverse . .
Flow-based models: . — o
Jet constituents Inveribe vansiom o 1) = @ Showers in Complex h|gh-
distributions

resolution calorimeters

Pile-up Interactions
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Simulation: two solutions

1705.02355, 2008.06545

1. Use classical

simulation or collider

data as input

2. Train generative
surrogate

3. Oversample

GAN: Adversarial
training

VAE: maximize
variational lower bound

Flow-based models:
Invertible transform of
distributions

Diffusion models:
Gradually add Gaussian
noise and then reverse
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Very recently, Madgraphs_aMC@NLO authors deployed a version of their code that can run on GPUSs.
This version significantly improves computation times (see this talk).
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Talk by C. Vico Villalba

So our can we do this on

idea is:

hardware based accelerators?
FPGAs are:

Highly parallelizable

INn some cases not as fast as GPU.
But less power consuming.
Hardware based! really versatile.
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Simulation: long term solution

o Make everything differentiable, exploiting differentiable programming

2401.05815, 2203.00057

Cheetah MadJax

_ _— (differentiable matrix element computation)
Cheetah — A High-speed Differentiable

Beam Dynamics Simulation for = le—22 ete -Higgs—»ZZ-4l 1e—23

Machine Learning Applications 250 - M2
4th ICFA Machine Learning Workshop ' 00
e it 2.25 -
-0.2
2.00 A
Gradient-based Tuning -0.4
gl 1.75 A %
3 -0.6 =~
« Tune magnet settings or lattice parameters using the gradient of the = 1.50 1 %
beam dynamics model computed through automatic - —0.8
differentiation. 1.25 -
+ Seamless integration with PyTorch tools tuning neural networks. F—1.0
1.00 -
+ Becomes very useful for high-dimensional tuning tasks (see 00
neural network training). r—1.2
0.75 -
80 100 120 140
/ MZ (Gev)

Deviation from target /
ground truth

Actuator / unknown variable

Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14

= 2 [/ 4LS)


https://www.hep.uniovi.es/vischia/persistent/2022-10-06_autodiffAtPHYS570AIPurdue_vischia.html
https://arxiv.org/abs/2401.05815
https://arxiv.org/abs/2203.00057

Reconstruction...

Tracks and calorimeter hits
b — Track
e @® Raw ECAL hit
d pa‘f“o @ Raw HCAL hit _
Charg\?a/wng' Raw Muon chamber hit
Raw detector hits d Particles
Charged hadron
' Calorimeter Photon
2:3 EZ‘:‘:LE“ clustering ~— Neutral hadron
) . — Electron
::x aﬁ’;;}mber " Tracks and calorimeter clusters - — Muon
— Track
@ ECAL or HCAL cluster
Reconstruction to physical (Which in-turn are the
maps low-level na rtisz:les basis of higher-level
detector read-outs interpretation)

2309.06782 Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 30/ 119


https://arxiv.org/abs/2401.05815

2309.06782

..with Al

Event as input set Event as graph Transformed inputs
X = {x;} X= {xi},AZAU- H={h;}
® 9 Graph building Message passing 5
PR Samd LSH-+kNN o— -—> l .
FXIw)=A G(X,Alw) =
Target set ¥ = {y;} Output set Y = {y/} l
Decoding

' !
Elementwise loss L(y;, y;) clementwise
classification & regression FFN

‘ ’ D, byl w) =

- target (predicted) particle, - no target (predicted) particle

= [PID, p1. E,n, ¢, q, ...], PID € {none, charged hadron, neutral hadron, y, et
h € R256
Trainable neural networks: %, &, J
® - track, " - calorimeter cluster, ™ - encoded element

x; = [type, pr, Egcars Eacars s @ Nouters Pouter 4 -+ -1, type € {track, cluster}

e

Matched jets / bin

1e5 — — - r T

b [ PF(M=1.04,IQR=0.11)
1.0 MLPF (M=0.99,IQR=0.06) |
0.8
0.6/ |
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=
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06 08 1.0 12 1.4
jet PT, reco/PT, gen
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Identification...

light quark
‘jet?

gluon jet?

bottom
quark jet?

top
232;5331337233 q uark jet’?

2015-10-21 06:26:57 CEST
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..with Al

Vast landscape of taggers

From Gregor Kasieczka's talk at EuCaifCon24, and from 10.1088/1748-0221/19/02/P02031

28001 @ LLFtaggers .ParT f.t.
HLF taggers
® Transfer learning
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Inference: unfolding

e Use classifiers to learn appropriate weights e Morphdistributions one into the other using diffusion
models
Detector-level Particle-level
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Inference: anomaly detection

Gaussian processes) B UCLouvain
1 1 1 1 Inverse Bﬁ Insmutdg recherche .
@ Multivariate gaussian associated to a set of en mathématiaue et physicus
random variables (Nyin = Nyandom variables) @ Data: mixture model with small S
® Kernel as a similarity measure between bin @ Classification based on sample properties
centers (counts) and a averaging function o Compare bootstrapped samples with
) =0, | G reference (pure B)
p(0.) = o (1570 [ o (o) @ Use Metodiev theorem to translate inference
10y into signal fraction

- i ° Validate with LRy LD\ + TCTEAL

e Signal is not parameterized ° Promising results
@ Hyperparameters fixed by the B-only fit
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Go to INFERNO: syst-aware inference opt.

compute via automatic differentiation
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Measurement-aware analysis opt.

loss value

Animation from 2203.05570
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https://arxiv.org/abs/2203.05570

Measurement-aware detector opt.!

e Joint optimization of design parameters w.r.t. inference made with data

e MODE White Paper, 10.1016/j.revip.2023.100085 (2203.13818), 117-pages document, physicists + computer scientists

z ~ f(x)

Multidimensional

stochastic variable
(often latent variables) \ + A (E(COSt))

z ~ p(z|z, \
p(z|z,0) “ep;

Sensor readouts

L = L(physics output)

¢(6) = Rl[z,06,v(0)]
High-level features ™= ™= —) &= A[C(B)]

Low-dim summary
for inference

Formulas from our white paper Pietro Vischia - Lisbon School on Machine Learning for Phy:
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https://arxiv.org/abs/2203.13818
https://arxiv.org/abs/2203.13818

Prototype for muon tomography

TomOpt: Differential optimisation for task- and constraint-aware design of particle detectors in the
context of muon tomography

Giles C. Strong, Maxime Lagrange, Aitor Orio, Anna Bordignon, Florian Bury, Tommaso Dorigo, Andrea Giammanco, Mariam Heikal, Jan Kieseler, Max
Lamparth, Pablo Martinez Ruiz del Arbol, Federico Nardi, Pietro Vischia, Ha{ham Zaraket

=
We describe a software package, TomOpt, developed to optimise the geome I%ut and specifications of detectors designed for tomography by scattering of cosmic-ray
muons. The software exploits differentiable programming for the modgh f

the optimisation cycle performing the loss minimisation. In doing X
particle physics instruments. We study the performance of tie tw

uon interactions with detectors and scanned volumes, the inference of volume properties, and
rovide the first demonstration of end-to-end-differentiable and inference-aware optimisation of
e on a relevant benchmark scenarios and discuss its potential applications.




CERN Al structures

e CERN Interexperimental Machine Learning Working Group, https://iml.web.cern.ch

The IML working group holds regular meetings open to all interested parties and maintains
a discussion forum to facilitate the exchange of information among the LHC experiments
in machine learning. The IML working group also fosters connections with other HEP
experiments and the ML community at large.

Fabio Catalano (ALICE)

A
Coordlnators“?} 07)‘
Lorenzo Moneta (SFT) \10 Qt V~ chia (CMS)

m

Anja Butter (TH) n Garcia Pardinas (LHCb)

Daniel Whiteson (ATLAS)
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CMS Al structures

e Shared coordination area between Physics and Offline&Computing
¢ Informs the collaboration, promotes new techniques, review Al-based analyses

e Real impact on steering Al applications in a 5000k members collaboration

ML Group Coordinator: Pietro Vischia 0’],

v
e CMS member since 2009 «e j
e Ph.D. in 2016 from Instituto Superior Técnico (Lisboa)
o Bachelor and Master’s: Universita degli Studi di Padova m
e “Ramon y Cajal” Senior Researcher at Universidad de Oviedo and ICTEA sin% 0
01/2023 q,
o Postdoc: UCLouvain (BE, 2018-2022), Universidad de Oviedo (ES, 2016-2018) \

o Predoc: research fellow at LIP Lisboa (PT, 2011-2016)
e  Analysis highlights: top mass and xsec, charged Higgs, WZ, ttH multilepton
e Rolesin CMS
o CERN IML coordinator for CMS (2020-2024) il
o Statistics Committee member (2015-ongoing)
o HiggsWW L3 (2021-2023), LHC EWK multiboson WG convener (2018-2020)
o Combine contact (SMP and TOP), Computing coordinator and PT Grid T2 admin (2013-2016),
ARC chair (3x) and member (13x), CCLE (6x), MC contact (HIG-Exo, HIG, HWW), CMSDAS
facilitator (3x), Trigger shifter (online and offline)

e ML in several papers and preprints (various CMS analyses, anomaly detection,
design of experiments, neuroscience), badly edited the photo to the right with ML

e  Other: Pl of NeuroMODE (neuromorphic computing for design of experiments and
trigger applications), steering board of MODE (Machine-learning Optimized Design
of Experiments), steering group of EUCAIF (European Coalition for Al in
Fundamental physics). Past: partner node Pl of AMVA4NewPhysics (Advanced
MultiVAriate Analyses for New Physics)

e  Regular courses and lectures on ML; book on Stat and ML near completion (or at
least this is what | told the editor :D )
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European Al structures

e European initiative for advancing the use of Artificial Intelligence (Al) in Fundamental Physics"
o |ICTEA (PV) in the Steering Board!

EUROPEAN COALITION FOR Al IN
FUNDAMENTAL PHYSICS

JENAA

Joint ECFA-NUPECC-APPEC Activities

Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 42/ 119



Fundamental — Applied

¢ Industries (e.g. in Asturias) can profit from Al developed at CERN!

o Just contact us!

e Many industrial applications of CERN Al technology

o MRI
o Hadron therapy and proton CT
o GPS
o Vacuum technology
o Satellites

o Cryogenics
o Art
o WWW

o Solar panels
o Airport security scanners

o Space watch (avoid asteroids)

Images from CERN


https://home.cern/about/what-we-do/our-impact

We have been doing "Al"-assisting

since thousands of years
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https://en.wikipedia.org/wiki/Tabula_Rogeriana#/media/File:Tabula_Rogeriana_1929_copy_by_Konrad_Miller.jpg

Be prepared for the next thousand!

(maybe not always at CERN :D )
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Understanding Data

Vast amounts of data are being generated in many fields, and the statistician's job is to make sense of it all: to extract important
patterns and trends, and understand "what the data says." We call this learning from data.
(Hastie, Tibshirani, Friedman, Springer 2017)
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Image from

Think in Millions of Dimensions

scientiamobile.com

10 PPI

2,54 cm
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https://www.scientiamobile.com/what-is-pixel-density/

Why does Statistics work?

Thomas Garrity, video from YouTube


https://www.youtube.com/watch?v=PAZTIAfaNr8

Functions Describe the World

¢ Interpolation

Image by Victor Lavrenko Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 49 / 119



Sometimes too well

¢ Generalization

Image by Victor Lavrenko Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 50/ 119



Easy or difficult?

Image by Pietro Vischia



Easy or difficult?

Panache

Image from indiatimes.com Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 52/ 119




Mapping Improves Understanding
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Representations Make Tasks Easier

Default Representation
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Deep Neural

Animation and picture from FastForward Labs

"Good" Semantic Representation



https://blog.fastforwardlabs.com/2020/11/15/representation-learning-101-for-software-engineers.html

Learn Representations

 Like AdS/CFT, but actually demonstrated &

=!=

h - REPRESENTATION

INP

T—space

ORIGINA

== == = (x,y) palrsin the training set
——» [, : encoder function for x
= = = f, : encoder function for y
L » Relationship between embedded points within one of the domains

Images from Goodfellow, Bengio, Courville, 2016

- \[aps between representation spaces
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https://www.deeplearningbook.org/

Learning from data:

the mathematical formalism

following Joan Bruna's formalization, see e.g. arXiv:1712.04741 Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 56 / 119


https://arxiv.org/abs/1712.04741

Learn in different ways (today: supervised learning)

Machine Learning

100}

® 2
" ()

I8 -

I
! |
-

Supervised Learning Unsupervised Learning Reinforcement Learning

Image by Renu Khandelwal Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 57 / 119


https://arshren.medium.com/supervised-unsupervised-and-reinforcement-learning-245b59709f68

Input space

e X':ahigh-dimensional input space

o The challenges come from the high dimensionality!

e If alldimensions are real-valued, Rd

o For square images of side v/d, spaceis X = R% andd ~ (’)(106)

10 PPI

Image from scientiamobile.com

2,54 cm

2,54 cm
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Data probability distribution

e 1:unknown data probability distribution

o We can sample from it to obtain an arbitrary amount of data points

o We are not allowed to use any analytic information about it in our computations

If you are interested, lecture on generators in the master's Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 59/ 119


https://www.hep.uniovi.es/vischia/persistent/2023-03-28_GeneratorsAtFPFE_2023_vischia.html

The target function

e f*: X — R,unknown target function
o In case of multidimensional output to a vector of dimension k, f* : X — R*

o Some loose assumptions (e.g. square-integrable with respect to the 7 measure, i.e. finite moments, bounded...)

Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 60/ 119



The loss functional
« Lif] =B, [1( (=), £ ()]

o The metric that tells us how good our predictions are
¢ The function l(-, ) is a given expression, e.g. regression loss, logistic loss, etc

o Inthis lecture, typically itis the L norm: || f — f* || 12(x»)

Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 61/ 119



Loss function comes from inference

e Decision-theoretic approach (C.P. Robert, "The Bayesian Choice")
o X:observation space
o O: parameter space

o D:decision (action) space

e Statistical inference take a decision d € D related to parameter @ € O based on observation z € X, under f(z|6)

o Typically, d consists in estimating h(@) accurately

U(6’,d) - ‘Eg7d U(’P)
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Learning goal

e Goal: predict \fstar from a finite i.i.d. sample of points sampled from v/

*
o Sample {Zi, f*(Ti) }imy @i ~ V
o For each of the points x;, we know the value of the unknown function (our true labels)

o We want to interpolate for any arbitrary « inbetween the labelled ;...

o ..in million of dimensions!

1 0 ]
0 0 \
t t
0
o O 0
0f 0 ]
0 0
0
_l _1 .
0 2 1 0 x 1

Image by Victor Lavrenko Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 63/ 119



The space of possible solutions

e The space of possible functional solutions is vast: & C {f BN R} (hypothesis class)

¢ We need a notion of complexity to "organize" the space

e v(f), f € F:complexity of f

o It can for example be the norm, i.e. we can augment the space F with the norm

Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 64 / 119



Organizing the space

When the complexity is defined via the norm, J is highly organized: Banach space!

The simplest function according to the norm criterion is
the O function

If we increase the complexity by increasing the norm, we

obtain convex balls { f € F;v(f) < 8} =: F?°

Convex minimization is considerably easier than non-
convex minimization

= @6}1 XLMS%
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Empirical Risk Minimization

e For each element of F, a measure of how well it's interpolating the data

e Empiricalrisk: L(f) = = >0, | F(@:) — f*(zi)|?
o |- |isthe empirical loss. If it's the norm, then f}(f) is the empirical Mean Square Error

o |fyou find an analogy with least squares method, it's because for one variable it's exactly that!

Complete
Statistical e
Theory of Learnin

Vapnik's image from youtube


https://www.youtube.com/watch?app=desktop&v=Ow25mjFjSmg

Formalizing the minimization of a functional in a given
space}

e Constraint form: min L(f).
feFs

o Not trivial

e Penalized form: min L(f) + Ay ().
feF

©o More typical

o \isthe price to pay for more complex solutions. Depends on the complexity measure

. Interpolantform:rfnijx__lq/(f) st L(f) =0 — f(=:) = f*(=:) Vi
e

o |n ML, most of the times there is no noise, so f(a:l) is exactly the value we expect there (i.e. we really know that z; is of a given class, without any
uncertainty)
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Are the three forms equivalent?

e The interpolant form exploits the no-noise assumption ("give me the least complex elements in F that interpolates”)

e These forms are not completely equivalent. The penalized form to be solved requires averaging a full set of penalized forms, so
it's not completely equivalent

e Thereis certainly an implicit correspondence between § and A

o (thelarger A, the smaller § and viceversa)

Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 68 / 119



The Fundamental Theorem of Machine Learning

e We want to relate the result of the empirical risk minimization (ERM) with the prediction

o Let's use the constraint form

A

¢ Let's assume we have solved the ERM at a precision € (we are e-away from...). We then have j? € F9 such that L(f) < e+
min ¢ zs L(f)

e How good is f at predicting f*? In other words, what's the true loss?

o Canuse the triangular inequality

A T . < . e . [ ]
L(f) }relgL(f) < flenjg L(f) }IeljfEL(f) Approximation error

(how appropriate is my measure of complexity)

e V) ) Statistical error
je

(having the empirical loss instead of the true loss)

+€ Optimization error

Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 69/ 119



The Error Market

e The minimization is regulated by the parameter ¢ (the size of the ball in the space of functions)

e Changing 0 results in a tradeoff between the different errors

o Very small § makes the statistical error blow up

o We are better at doing convex optimization (easier to find minimum), but even then the optimization error € will not be
negligible

o e:how much are ou willing to spend in resources to minimize L( f)

(e]

We kind of control it!

[e]

If the other errors are smaller than ¢, then it makes sense to spend resources to decrease it

[e]

Otherwise, don't bother

Bottou and Bousquet, 2008, Shalev-Shwartz, Ben-David Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 70/ 119


https://leon.bottou.org/papers/bottou-bousquet-2008
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/

The big questions

e Approximation: we want to design "good" spaces JF to approximate f* in high-dimension

o Rather profound problem, on which we still struggle

e Optimization: how to design algorithms to solve the ERM in general
o We essentally have ONE answer

o Gradient Descent!

Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 71/ 119



The Curse of Dimensionality

e How many samples do we need to estimate f*, depending on assumptions on its regularity?

Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 72/ 119



The Curse of Dimensionality

e How many samples do we need to estimate f*, depending on assumptions on its regularity?

o f* constant — need only 1 sample

o f* linear — need d samples
e Space of functionalsis F = {f : RE — IR A (as)l =< a5, >} ~ R (isomorphic)

o |t's essentially like solving a system of linear equations for the linear form < x1,60" >

o dequations, d degrees of freedom

e Thereason why it's so easy is that linear functions are regular at a global level

o Knowing the function locally tells us automatically the properties everywhere
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Locally linear functions

e Assume f* locally linear, i.e. f* is Lipschitz
o [f*(z) — f*(y)| < Bllz -yl
o Lip(f*) = inf {8; f* (@) — £*(3)] < Bllz — gl is true)
o Lip(f*)isameasure of smoothness

e Space of functionals that are Lipschitz: F = {f :RY = R; f is Lipschitz}

e We want a normed space to parameterize complexity, so we convert to a Banach space

° Y(f) = maz(Lip(f), |fls)

o The parameterization of complexity is the Lipschitz constant
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Formalization of the prediction problem

e Ve > 0,find f € Fsuchthat ||f — f*|| < efromni.i.d.samples

o n:sample complexity, "how many more samples to | need to make the error a given amount of times smaller"

e If f*isLipschitz, it can be demonstrated that n ~ e

o Upper bound: approximate f with its value in the closest of the sampled data points, find out expected error ~ 2 upper bound is exponential

o Lower bound: maximum discrepancy (the worst case scenario): unless you sample exponential number of data points, knowing f(a:z) for all of them
doesn't let youwell approximate outside
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PAC (Probably Approximately Correct) learning

DEFINITION 3.1 (PAC Learnability) A hypothesis class # is PAC learnable
if there exist a function my : (0,1)> — N and a learning algorithm with the
following property: For every €,§ € (0,1), for every distribution D over X, and
for every labeling function f : X — {0,1}, if the realizable assumption holds
with respect to H,D, f, then when running the learning algorithm on m >
my (€,0) i.i.d. examples generated by D and labeled by f, the algorithm returns
a hypothesis h such that, with probability of at least 1 — & (over the choice of
the examples), Lp f)(h) < €.

o ¢ ("approximately correct"): how far from optimality the model is
e J ("probably"): how likely the model is to meet the accuracy requirement

* My determines sample complexity (how many examples to guarantee PAC?)

COROLLARY 3.2 FEvery finite hypothesis class is PAC learnable with sample
complexity

my (6, 5) S

[los(P4/3]

€

Images from Shalev-Shwartz and Ben-David (2014 Cambridge University Press) Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 76 / 119



Enough of the math?
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What's the best function

To describe the data points? (regression) To separate into two classes? (classification)
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To describe the data points? (regression) To separate into two classes? (classification)
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To describe the data points? (regression) To separate into two classes? (classification)




What's the best function

To describe the data points? (regression)

—

.M=9

—

To separate into two classes? (classification)




Avoid overtraining

L
L
=

Happiness
=
b
e

Wealth Wealth Wealth

Prediction Error
for New Data

Cotimism

Model Prediction Error

>
Training Error

.

& 6 6

Model Complexity

From can't remember where Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 ---82/ 119



Training a model

Illustration P. Vischia, 10.5281/zenodo0.6373441

Application
sample

Use the
training

Test

» network
(e.g. for
inference)

Validation
and
sometimes
optimization

sample

Dataset

Training
sample

> of the

trained
network

Parameterization

/ True label
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https://zenodo.org/doi/10.5281/zenodo.6373441

Before looking into ML models...

Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 ---84 / 119



Before looking into ML models... Look at the data!!!



Data preparation: MinMax scaling

(x — min(x))

k_

~ abs(maz(z) — min(z))

z=kx(Max — Min) + Min

e \ery sensitive to outliers (it scales them linearly)

e Scale to different variance and different mean

1.0 4

o o o
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| | |

Average house occupancy

o
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Image and code from scikit-learn
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https://scikit-learn.org/stable/auto_examples/preprocessing/plot_all_scaling.html

Data preparation: standardization

(z — mean(x))

= var(z)

¢ Direct comparison between weights assigned to different features

e Easier, more effective numerical minimization, but still sensitive to outliers

e Scale to same variance and same mean (can also scale to same variance but different mean z = vaf(m) )

Data after standard scaling
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https://scikit-learn.org/stable/auto_examples/preprocessing/plot_all_scaling.html

Data preparation: normalisation

¢ Normalize each data point to have unit norm

o Useful if using dot-product or other kernels to quantify similarity

Data after sample-wise L2 normalizing

Full data Zoom-in
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https://scikit-learn.org/stable/auto_examples/preprocessing/plot_all_scaling.html

Data preparation: PCA

Principal Component Analysis: find orthornormal basis where dimensions are linearly uncorrelated

o Found iteratively finding the direction (linear combination of features) explaining the most variance

Principal components are the eigenvectors of the data
covariance matrix

o Can be found by Singular Value Decomposition (SVD)

Somehow analogous to finding axes of ellipsoid

o Features with different units — arbitrariety (scale them first)

Can retain a few dimensions: dimensionality reduction

o Drop directions least explaining the variance

Image by Nicoguaro on Wikipedia and by builtin

12

10
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https://en.wikipedia.org/wiki/File:GaussianScatterPCA.svg
https://builtin.com/data-science/step-step-explanation-principal-component-analysis

Data preparation: PCA

e lteratively, find the first one, then find the next one conditioned on being orthogonal to the previous one
o Or simply do Single Value Decomposition (SVD)

e SVD: 2D case (multivariate is just iteratively the same)
o find the best linear fit: this shows the direction of maximum variance in the dataset
o the eigenvector is the direction of that line

o the eigenvalue expresses how much the data set is spread out on that line

o Steps for PCA
o Standardize each variable
o Compute covariance matrix
o Compute eigenvectors of covariance matrix

o Order them by eigenvalue

o Select components you want to keep

o Transform data in the new coordinate system
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https://builtin.com/data-science/step-step-explanation-principal-component-analysis

Data preparation: missing values

o LHC data are of extremely good quality (unlike e

edicine, social sciences)

Whathas twaoth urﬁf:ns and
Hqi-

E — il

. e -
doesn;tgivelacrap i

o Use proxy feature (pT of the two b jets — pT of the two jets with highest b-tagging discriminator, in a region without b jets)

o Use average over other data points (pT of the third jet — **mean of the third jet pT for data points that have it, if some data points don't have three jets)
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https://www.pinterest.com/pin/bob-kelso-gifs--42502790222796560/

Data preparation: Types of categorical features

e Nominal: these are names, encoded as numbers (e.g. country of birth, assigning a certain number to each country). Operations
do not make any sense whatsoever

e Ordinal numbers: express ordering, so comparisons (greater-than and less-than) make sense, but other operations (addition,
subtraction, multiplication, etc) do not

* Interval numbers: express discrete measurements (e.g. year today). Subtraction has meaning (e.g., to calculate age), but O is
arbitrary

e Ratio numbers: interval numbers, but where the 0 has a special meaning (e.g. length, time). Subtraction, multiplication, division
have meaning

When the feature is categorical, how to tell a model that operations on a label
don't make sense?
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Data preparation: One-hot encoding

¢ One-hot encoding works both for input features and for output labels

Picture from scaler.com

o Eliminates order, each category is orthogonal (independent)

o Improves model performance: allows the model to capture structure and relationship between features that would not be capturable if encoded as a

single number

o Makes non-numerical data compatible with algorithms that require numerical inputs

Feature (Color)

Red

Green

Yellow

Green

Red

>
One Hot Encoding

One Hot Encoded Vector Red Green Yellow
[1,00] 1 0 0
[0,1,0] 0 1 0
[0,0,1] 0 0 1
[0,1,0] 0 1 0
[1,00] 1 0 0
SCA LFR

Topres
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https://www.scaler.com/topics/data-science/one-hot-encoding/

Data preparation: One-hot encoding

 "Yellow" [0, 0, 1] can be predicted as "0 for red and O for green"

o One-hot-encoded features highly correlated ("multicollinearity")

e Dummy variable trap

o Drop one of the "dimensions"

Feature (Color) Red Green
Red 1 0
Green > 0 1
Yellow One Hot Encoding 0 0
Green 0 1
Red il 0

Yellow Column dropped to avoid
the Dummy Variable Trap

SCALER

Topres
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https://www.scaler.com/topics/data-science/one-hot-encoding/

Other types of encoding for nominal features

e Label Encoding: assume there is some ordering (treat nominal feature as an ordinal feature)

e Binary Encoding: convert categories into binary numbers and then creates binary columns. Preserves information, but
compresses it

o Target Encoding: conflates regression and classification, replacing each category with the mean of a target feature for that
category. Can be useful, but risk of leakage (averages done on full dataset imply information leak from test to training data set)

¢ That said, depending on the model you choose, maybe one-hot encoding is not even necessary. Some loss functions, for
instance, are implemented in such a way that no implicit ordering is enforced (see in the next lecture)

Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 95/ 119



Class weights vs event weights

Tomorrow, tomorrow!

You're only a II?H away!

] MakeAGIF.com



https://www.pinterest.com/pin/tomorrow-annie-gif-tomorrow-annie-youre-ony-a-day-away-discover-share-gifs-in-2023--381117187233166801/

Support Vector Machines (Vapnik)

e Similar to a "cut-based" analysis, but sophisticated strategy for optimal class separation

¢ Minimize empirical classification error + maximize geometric margin

Figure by Larhmam on wikipedia 2025.03.13-14---97 /119



https://en.wikipedia.org/wiki/Support_vector_machine#/media/File:SVM_margin.png

Support vector Machines

¢ Nonlinearity by kernel trick (deform the metric of the space until separation is linear)

OOO\
AY
0 o¥e)
O o
® @
o) o O
g O
O
'e) P>
O
. O
O

Figure by Alisneaky and Zirguezi on wikipedia


https://commons.wikimedia.org/wiki/File:Kernel_Machine.svg

Decision Trees

e "Cut-based" analysis on steroids

e Orderingis key

o

(o}

o

1) check stopping criterion

2) sort according to each feature

)
)

3) compute all separations

4) if best separation improves, split
)

5) back to 1

Image from 10.1142/9789811234033_0002

y < 0.004

v
A
v
A
v
A

pass fail pass
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https://doi.org/10.1142/9789811234033_0002

Decision Trees: hyperparameters

« Class balance: normalize classes » ; w; = > _; w;, (1, j) at root node

o |n practice, early splitting provides balance anyway

e Impurity 7(t), and stopping criterion

(e]

Minimum leaf (end node) size (maximum error v/ IV,,,;,, €nsures significance of purity estimate)

[e]

Perfect separation

(o]

Insufficient improvement

o Maximum tree depth (purely computational requirement)
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Decision Trees: splitting
o Impurity decrease: Ai(S,t) = i(t) — ppi(t,) — pri(tr)

e Optimization problem: Ai(S*,t) = maxgespiits Ai(S,t)

unit
o
N
3

arbitrary
o
N

0.15

Split criterion

0.1 - Misclas. error

- Entropy

005 = Gini

IIIIIIIIIIIIIIIIIIIIIIII

0 0.2 0.4 0.6 0.8 1
signal purity

- Fig. 5. Impurity measures as a function of signal purity,
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https://doi.org/10.1142/9789811234033_0002

Decision Trees: limitations

e Sensitivity to training sample
o Decision trees are not robust: high variance for small changes in training sample

e Treedepth results in higher statistical uncertainty in the split purity
o Can be mitigated by pruning

¢ Ensemble learning fixes all of this

o Richer description when intersecting partitions

o More accurate description when averaging partitions

Partition 3
\

Class 1 Class 1

Class 2
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https://doi.org/10.1142/9789811234033_0002

Boosted decision trees

e Ada(ptive) Boost

o |ncrease at each iteration the importance of events incorrectly
classified in the previous iteration

e Gradient Boost

o fit the new predictor to the residual errors of the previous one

28 Ground truth tree 2 tree 3
Box 2 : ' ' I ! ' ) ]
D1 J D2 d 1] 1t ]
II(/ .n’/ 4 L . .. 4 - o
1.1 I ]
+ -+ + D3 ! 3 e ’ [ R
J e T T + LEATC i
ar - T = .
2 6 10 2 6 10 2 6 10
=x e + H = ¥ = X X X X
4 I Y
+
Box 1 + + Box 3
+
+ i «—— Box 4
. Bagging: training trees on bootstrap replicas, average all trees
. Random forest: bagging + pick only a random subset of features at each step

| can't remember where | took the images from. Maybe the TMVA manual?
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Performance (classification): ROC Curve explained

e Depending on how well the classifier works, each class will have a score distribution close to its true label

Density

3.0 +

2.5 4

2.0+

1.0

0.5

0.0 -

Distribution of Classifier Scores for Class 0 and Class 1

0.0 0.2 0.4 0.6
Classifier Score

Class A (true label Q)
Class B (true label 1)

0.8

1.0
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Performance (classification): ROC Curve explained

e To use the score for categorization, decide "/ label as Class B everything with a score larger than X"

Distribution with Cutoff at 70% Signal Acceptance

=== Cutoffat 0.7
mw Class A (true label 0)

3.0 1
Class B (true label 1)

2.5 4

2.0+

Density

1.0

TPR: 0.57
FPR: 0.00

0.5

0.0 -
0.0 0.2 0.4 0.6 0.8 1.0

Classifier Score

Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 105/ 119



Performance (classification): ROC Curve explained

e Changing the cutoff results in tradeoff between larger TPR at the price of a larger FPR

Distribution with Cutoff at 50% Signal Acceptance

T
| -—- Cutoff at 0.5
3.0 4 : [ Class A (true label 0)
) : Class B (true label 1)
I
I
I
2.5 1 :
I
I
I
I
2.0 1 :
I
Fy i
0 I
5 I
8 151 |
I
I
I
I
|
1.0 :
I
1| TPR: 0.90
FPR: 0.11
0.5 1

0.0 -
0.0 0.2 0.4 0.6 0.8 1.0

Classifier Score

Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 106 / 119



Performance (classification): ROC Curve explained

e Changing the cutoff continuously results in a set of pairs (T'/PR, FPR) that describes a continuous line

Dynamic Cutoff with Changing TPR and FPR

T
I —== Cutoff at 0.00
30 4 : mm Class A (true label 0)
) : Class B (true label 1)
I
|
|
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I
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204 |
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8154 !
i
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Performance (classification) ROC Curve explained

e The line described by the pairs (T PR, FPR) is the Receiver Operating Characteristic (ROC) curve

o The diagonal is the worst performance possible (throwing a coin)

o The closer the integral is to 1, the better. If the integral is smaller than 0.5, then you can invert the decision to have a good classifier

e Usually then you choose your decision cutoff by deciding

which FPR you accept or which TPR you want ROC Curve
e For two classes (signal, background), it is signal efficiency 0 s
vs background efficiency (rejection := 1-efficiency) ,/’
. : L 0.8 ol
e For multiple classes: either pairwise or one-vs-all e
’f
2 7
% 0.6 ,’f
2 e
g -
=% s
Y 0.44 e
= ot
”
JRe
,I
0.2 ,,’
r
,/
JRe
,l
004 ¥ ROC curve (area = 0.97)
O.IO 0.I2 0.I4 0:6 O.IS l.IO

False Positive Rate
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Performance (regressio): scatter plots

e For regression problems

e Can compute linear pearson coefficient as an estimate of linearity

o Formulas exist also for weighted events
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Image by Florian Bury, see also paper: 10.1007/JHEP04%282021%29020
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https://indico.cern.ch/event/924283/contributions/4105189/attachments/2154021/3632722/FastML2020.pdf
https://doi.org/10.1007/JHEP04%282021%29020

Confusion matrix

e For classification, can also use it to discretize regression (e.g. in the case of histograms)

e Note the normalization (each true label row sums up to 1)

Image by seralouk on stackoverflow

True label
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https://stackoverflow.com/questions/58766561/scikit-learn-sklearn-confusion-matrix-plot-for-more-than-3-classes

Error rates (for reference)

TOTAL POPULATION
TEST POS
TEST
QuT-
o TEST NEG

ACCURACY
ACC
ACC= _TP+TN
TOT POP

Image from unite.ai

CONDITION
determined by "Gold Standard"
CONDITION POS CONDITION NEG
Type | Error
True Pos False Pos
TP FF
Type Il Error
False Neg True Neg
FN TN
Sensitivity (SN), Recall Fall-Out
Total Pos Rate False Pos Rate
TPR FPR
TPR = TP FPR = FP
CONDITION POS CONDITION NEG
Miss Rate Specificity (SPC)
False Neg Rate True Neg Rate
FNR TNR
FNR = FN TNR = T

CONDITION POS

CONDITION NEG

PREVALENCE
CONDITION POS
TOTAL POPULATION
Precision
Pos Predictive Value False Discovery Rate
PPV=_TP FDR=__FP
TESTP TESTP
False Omission Rate Neg Predictive Value
FOR=_FN NPV=_TN
TESTN TEST N

Pos Likelihood Ratio
LR +
LR+ = TPR
FPR

Neg Likelihood Ratio
LR -
LR- = TNR
FNR

Diagnostic Odds Ratio
DOR
DOR= LR+
LR -
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https://www.unite.ai/what-is-a-confusion-matrix/

Model complexity

()] ()]
o+ -+
(] ©
| - | -
| |
o o
- -
()] Q
number of trees/epochs number of trees/epochs
(a) (b)
()] Q
o+ +J
o o
| - |-
S S
()] ()]

best

é,interpolafion threshold
number of trees/epochs number of trees/epochs

(c) (d)

Image from 10.1142/9789811234033_0002 Pietro Vischia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 112/ 119



https://doi.org/10.1142/9789811234033_0002

Overtraining check

e KS test done mostly for BDTs. For neural networks, much handier ways

Do the training and test output distributions come from the same underlying p.d.f.?

TMVA overtraining check for classifier: DT

TMVA
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(a) Single decision tree
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Image from 10.1142/9789811234033_0002

i dignal ekt 'sampid) " "
[[7] Background (test sample)

""slghal (frainlng samphe] * T 7]
« Background (training sample) ]
d) probabllity = 0.974 (0.608)

IETAREENE FERTE FEE N ERRRE

WiO-flow (S.B): (0.0, 0.0)% ! {0.0, 0.0)%

m

0.4 0.6 0.8
BDT50 response

(d) 50 trees

TMVA overtraining check for classifier: BDT5

(1/N) dN/ dx

(1/N) dN/ dx

TMVA

9 i 'a‘lgr'lll (les{ sninpl'e) t . 'Slghal l{tr:.l|nln'u sﬁmﬁle] s 3
q (test sample) | | - nple) 3
g K mirnov test: signal (backg pr y = 0.837( 1) E
e 3
SE =N
£ 7 El
% Ar .
NI £
1 i
1Y 48
‘e
1 ‘ ’
W 3
oBL_HHn ; g
-1 -0.5 0 0.5 1

TMVA overtraining check for classifier: BDT100

4

3.5

BDTS response

(b) 5 trees

TMVA,
" + Signal (frainthg sampid) * 7

T Sighal (lest sarbple) " 1
F.77] Background (test sample)

[ Kolmogerov-Smirnov test: signal (background) probability = 0.952 ( 0.95)

UiO-flow (S,B): (0.0, 0.0)% ! {0.0, 0.0)%

0.4 0.6
BDT100 response

(e) 100 trees

TMVA overtraining check for classifier: BDT10

(1/N) dN/ dx

(1/N) dN/ dx

TMVA

© isla.{al (test'sample) | | + 'Slgnal (trsining sample)’ * "

g (test sample) | | - g ( ] 1

K Smirnov test: signal f#m (0388)
4

il T TR ETE
UiD-flow (S,B): (0.0, 0.0)% / (0.0, 0.0)%

04 06 0.8 1

BDT10 response

(c) 10 trees

TMVA overtraining check for classifier: BDT400

[E5T Signal (lest'sampie) |
[777) Background (test sample)

TMVA
[. Bighal (training sdmple) '

test: signal (back ity = 0.491 (0.639)

MPENI I AR ITE AEATAE E
UiO-fiow (S,B): (0.0, 0.0)% ! {0.0, 0.0)%

0.4 0.2 0 0.2 0.4
BDT400 response

400 trees

Pict(ﬁ \)SChia - Lisbon School on Machine Learning for Physics, 2025.03.13-14 --- 113/ 119


https://doi.org/10.1142/9789811234033_0002

Interpretability, explainability

e Permutation Importance: the decrease in a model score when a single feature value is randomly shuffled (see scikit-learn
documentation) (akin to impacts for profile likelihood fits)

e Shapley Values: based on game theory (will use them this afternoon)

e Correlation-based: e.g. parallel coordinates in TMVA: look where each variable is mapped to/correlated with

e

Journal of Physics: Conference Series 219 (2010) 032010 doi:10.1088/1742-6596/219/3/032010

0.9926 427.1972 2.2000 197.0056 181.0919 460.4492 1.0751

0.0001 100.0001 -2.2000
MVA_SVM_Gauss_0.5_17 Var00 Var01 Var02 Var03 Var04 Var05
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https://scikit-learn.org/stable/modules/permutation_importance.html

Model assessment by comparing models

~

« Bayesian Information Criterion: BIC = N ¢ree params{(Ndata ) /2In(L)

o Parameter 6 predicted by two models M and M;: P(0|Z, M) = P(f\%é\g?}\]}()@\M)

o Apply Bayes theorem to Bayesian evidence (Model likelihood): P(Z|M) = [ P(Z|0, M )P(6|M)d6

.  P(Mo|z) _ P(Z|My)m(M,)
o Posterior odds: P(M?I:?) = P(£|M2)7T(M(1))

o Canrewrite posteriors in terms of BIC, equivalent

e Minimum Description Length (MDL): Kolmogorov complexity (length of minimum program needed to describe the data)
o fori = 1t02500;do print’0001’; halt
o print'101001010100010111001000010000101110011100001010100101..."; halt
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Model assessment by comparing models

e Structural Risk Minimization: complexity as Vapnik-Chervonkensis class (largest number of shattered points)

o Build a nested sequence of models with increasing VC complexity h
o Write a probabilistic upper bound for the regression error: err < f(h/N)

o Choose model with smallest value of the upper bound

Image from Hastie, Tibshirani, Friedman
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Model assessment: focus on prediction error

e Cross-validation: useful when data are scarce
o Split the data into K parts ("folds")

o For the kth part, fit the model to the other K-1 folds, and calculate test error as error on predicting the kth part data
o Do this for all k, then combine the K estimates of the prediction error

o Choose K

= K=N (leave-one-out), unbiased but high variance (training sets are basically the same)

= Low K (5--10): Lower variance, but maybe bias (folds not representative of the data set)
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Model assessment: focus on prediction error

e Bootstrap: a general tool to assessing statistical accuracy

o Estimate the variance on the statistic S(Z) (Z are the data)

o Can be used as model assessment tool, or to improve an estimator

o Bagging to combine weak learners (ensemble learning)
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Next: supervised learning

Don't forget to let us know NOW if you need a wifi account (i.e. if you don't have an eduroam account or if your
account doesn't work)
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