(small) modifications to the Drell-Yan setup

C. Quintans, C. Azevedo, G. Almeida

02/10/2024

A typical setup for Drell-Yan (à la COMPASS)

Identified muons: X/X0>30 in spectrometer

- MF1: 34 X0 ECAL2: 16 X0
- MF2: 21 X0 HCAL2: 50 X0
- MF3: 57 X0
- ECAL1: ~20 X0
- Hadron absorber: 57 X0
- HCAL1: 46 X0 Beam plug: 365 X0

Study impact of (removing) MW2

A sample of 150K Drell-Yan events, generated with Pythia8 In the mass range 3.5< $M_{\mu\mu}$ < 11 GeV/c²

Full MC chain TGEANT+CORAL+PHAST

A special setup:

- The Muon Filter 2 (MF2: 2.4 meters of concrete, centered at Z=3800 cm) had its <u>central hole fully filled with concrete</u>.
- The Muon Wall 2 detector (MB) was removed from the setup

Consider only events generated in 4< $M_{\mu\mu}$ (gen) < 9 GeV/c² and -330 < Z_{vertex} (gen)< -150 cm

xF_alternative_mc (z_vent_mc>-330 && z_vent_mc<-150. && dimuon_m_mc>4. && dimuon_m_mc<9. }

Pair selection	# events	Acc %
Generated	67949	
Reconstructed	27019	39.8
X/X0>30 (muons)	21160	31.1
Zlast>1500 & Zfirst<300	20368	30.0
$4 < M_{\mu\mu}$ (rec)< 9 GeV/c ²	19059	28.0

Dimuon triggers:

2LAS: Two large hodoscopes with big central hole (HG01 and HG02), and MF1 in between. It covers large angles. OT-LAS: one muon at large angle (LAS) and one at smaller angle (in SAS: HO03 and HO04, central holes). MT-LAS: one muon at large angle (LAS) and one at even smaller angle (in SAS: HM04 and HM05, central holes).

	Pair selection	# events	Acc %	δр/р %
	2LAS	10885	16.0	2.2
Zlast1>3800 Zlast2>3800 🗨 —	OT-LAS	5485	8.1	0.8
	MT-LAS	641	0.9	0.3
	No trigger, but possible	1049	1.5	0.4
	total		26.5	

Acc (C): 27.3% Acc (W): 23.8%

While with default setup, we had:

Pair selection	# events	Acc %
Generated	68588	
Reconstructed	26531	38.7
X/X0>30 (muons)	21022	30.6
Zlast>1500 & Zfirst<300	20210	29.5
$4 < M_{\mu\mu}$ (rec)< 9 GeV/c ²	18948	27.6

Same as before, within errors

	Pair selection	# events	Acc %	δр/р %
	2LAS	10743	15.7	2.2
	OT-LAS	5270	7.7	0.8
	MT-LAS	655	1.0	0.3
Zlast1>3800 Zlast2>3800	No trigger, but possible	1224	1.8	0.4
	total		26.2	

Acc (C): 26.7% Acc (W): 23.7%

A difference is visible for OT-LAS, where the muon track going into OT has less hits associated for the NoMW2 setup.

That does not affect the muon identification (given by X/X0>30). The muons in OT tend to have one single measured point after MF2, in HO04 (but X/X0>70).

~11% of the 2LAS events are seen and validated also in OT-LAS.

Conclusions

Removing the MW2 while filling the hole of MF2 we obtain a setup that presents still same performance for dimuons reconstruction.

The is no impact in the momentum resolution of muons, when removing MW2.

A dimuon identification based on X/X0>30 + multiplicity>=2 (trigger level 1) would still work, leading to identical or better acceptance.

Hodoscopes are still relevant for a future setup, poviding a precise timing (\sim 1 ns) and correct X/X0 for muon identification.