
This project has received funding from the European Union’s Horizon research
and innovation programme under the grant agreement No 101058129

Containerization
of applications
and services in
DT-GEO
Jorge Gomes and Mario David
LIP

● Lightweight operating system level virtualization method

○ Relying on isolation instead of virtualization or emulation

○ Isolation of processes from the host operating system with very low overhead

○ Execution across different software environments

● Enables self contained encapsulation of a given application or service

○ Including configurations

○ Including software dependencies e.g. libraries and executables

● Limitations

○ Hardware architecture must be the same

○ Operating system kernel must have the same binary interface

Containerisation
What is it

● High efficiency

○ One single operating system kernel shared by many applications

○ Avoids duplication of system processes

○ Performance and resource consumption similar to direct execution in the host

○ Can take advantage of newer more optimized libraries and compilers

● Better maintainability

○ Easier application maintenance, distribution and deployment

○ Instead of adapting the user sw to the host, it brings the user environment to the host

● Easier reproducibility and preservation

○ Having whole application or service plus its run-time environment in an image

○ Container images can be easily stored for later replay, reuse and preservation

Containerisation
Other advantages

Linux containers
Bringing the user software environment to the execution host

+

Linux Kernel

+

Hardware

App 1

Linux Kernel

App 2

Hardware

Libs 1 Libs 2

App 3

Libs 3

Container Host Separate Environment

Application

Libraries
Dependencies

Linux containers
Execution across different distributions

User application / service

Libc.so
Libc.so

System Call Interface (ABI)

Kernel

U
se

r S
pa

ce
C

on
ta

in
er

K
er

ne
l S

pa
ce

H
os

t

libX.so libY.so libZ.so

Linux containers
Isolation

Host

/

etc bin mnt lib dev

etc bin

myprog

lib

C
on

ta
in

er
 Im

ag
e Volume

/

/

etc bin mnt lib dev
Host

Linux containers
Isolation

Process
mount(“VOL” , “/mnt” ,…)
chdir(“/mnt”)

etc bin

myprog

lib

C
on

ta
in

er
 Im

ag
e Volume

/

/

etc bin mnt lib dev
Host

Linux containers
Isolation

Process
mount(“VOL” , “/mnt” ,…)
chdir(“/mnt”)
pivot_root(“.”, “.”)
chroot(“.”)

etc bin

myprog

lib

C
on

ta
in

er
 Im

ag
e Volume

/

/

etc bin mnt lib dev
Host

Linux containers
Isolation

Process
mount(“VOL” , “/mnt” ,…)
chdir(“/mnt”)
pivot_root(“.”, “.”)
chroot(“.”)

etc bin

myprog

lib

C
on

ta
in

er
 Im

ag
e Volume

/

Host

Linux containers
Isolation /

Process
mount(“VOL” , “/mnt” ,…)
chdir(“/mnt”)
pivot_root(“.”, “.”)
chroot(“.”)
execl(“/bin/myprog”, …)

etc bin

myprog

lib

C
on

ta
in

er
 Im

ag
es

Volume
/

/

Host

Linux containers
Isolation

Process
mount(“VOL” , “/mnt” ,…)
chdir(“/mnt”)
pivot_root(“.”, “.”)
chroot(“.”)
execl(“/bin/myprog”, …)

• Using mount usually requires
privileges (CAP_SYS_MOUNT)

• Can use FUSE e.g. libguestfs

• Using chroot and pivot_ root
usually requires privileges
(CAP_SYS_CHROOT)

• Can use user namespace

etc bin

myprog

lib

C
on

ta
in

er
 Im

ag
e Volume

/

Host

Linux containers
Isolation /

● Kernel namespaces: isolate system resources from process perspective
○ Mount namespaces: isolate mount points
○ UTS namespaces: hostname and domain isolation
○ IPC namespaces: inter process communications isolation
○ PID namespaces: isolate and remap process identifiers
○ Network namespaces: isolate network resources
○ User namespaces: isolate and remap user/group identifiers
○ Cgroup namespaces: isolate Cgroup directories

● Seccomp: system call filtering
● Cgroups: process grouping and resource consumption limits
● POSIX capabilities: split/enable/disable root privileges
● chroot and pivot_root: isolated directory trees
● AppArmor and SELinux: kernel access control

Linux containers
Usual process isolation and limitation

01

02

03

04

Containerisation
In short

Run programs as processes in a standard way

No hardware emulation or vm hypervisors

Just separation of process environments

Therefore simple and efficient

DT-GEO
From metadata to the execution of containerised applications and services

● Metadata repository

○ software, workflows, etc

● DevOps inspired approach

○ git repositories

● Container image creation

● Container image registry

● Quality assurance

● Infrastructure

○ Cloud based

○ HPC based

● PyCOMPs to implement workflows

● Container execution engines

○ Singularity/Apptainer

○ docker

○ udocker

DT-GEO
Container execution engines

DT-GEO
Workflows with COMPSs and containers

Container
engine

Container
image

Executable
in image

Input and
Output files

DT-GEO
Container image types

● Docker and OCI images

○ Widely used and supported formats, OCI is a standard

■ docker, udocker, Kubernetes, podman, Singularity, Apptainer …

● Singularity images

○ Specific format of Singularity

■ Singularity, Apptainer …

DT-GEO
Containers and infrastructure environments

● Cloud

○ docker: simple container execution or execution via COMPSs

○ Kubernetes: execution of containerised services with scalability and HA

● HPC

○ udocker: execution everywhere, execution across heterogeneous hosts,

execution without namespaces, privileges or other dependencies

○ Singularity or Apptainer: execution in HPC environments, singularity image

format may yield faster file access within the container

Container execution engines
Comparison

Open
source

User
deploy

and
execute

Image Types Isolation Method Infrastructure

OCI
images

docker
images

Singular
ity

images

namespac
es

system
call

intercept

shared
lib call

intercept

HPC
and

batch

CLOUD
VM

docker

singularityCE

singularityPRO

apptainer

podman

kubernetes

udocker

Container execution engines
Performance

(Execution mode F3)

Train a model to recognize
handwritten digits (the
MNIST data set).

DT-GEO containerisation
Deliverables

● D3.2 Components Containerization

○ Containerization why and how

○ Relevance for digital twins

○ Plans for containerization from DTCs

● D3.4 Revision of the DT-GEO components containerization

○ Update on containerization

○ Revised plans and status from DTCs

DT-GEO Containerisation
Status

Software components 82 Steps in workflows or services

To be containerised 64 Services and applications for HPC and cloud

No plans for containerisation 18 Most correspond to simple portable codes

HPC 22 4 require MPI, 9 require GPU

Cloud, FENIX 36 2 may require MPI, 4 require GPU

Local 19 3 require GPU

Not yet known 19

Facility

Containerisation plans

DT-GEO Containerisation
Status

Docker 63 Can be executed with docker or udocker

Singularity 22 Must be executed with singularity

docker 51 In cloud or local execution

udocker 42 In batch systems

singularity 30 In batch systems

kubernetes 5 In cloud

Container engine

Image type

udocker
Architecture

ptrace
(proot)

shared lib
(fakechroot)

user
namespaces
(runc/crun)

pull import load

container
layers

container
dir tree

create

run $H
O

M
E/

.u
d

o
ck

er
/

read layers

flattening

store

execute
Namespaces
(singularity)

simple
pathname translation

no namespaces
no chroot
no mounts

im
ages

Isolation
Using Kernel functionalities

User application / service

System Call Interface (ABI)

Kernel

U
se

r S
pa

ce
C

on
ta

in
er

K
er

ne
l S

pa
ce

H
os

t

Shared libraries (libc)

chroot, pivot_root
namespaces etc

docker
podman
singularity
apptainer
Kubernetes
udocker modes Rn, Sn

Isolation
Using system call interception

User application / service

System Call Interface (ABI)

Kernel

U
se

r S
pa

ce
C

on
ta

in
er

K
er

ne
l S

pa
ce

H
os

t

Shared libraries (libc)

Intercepting ABI calls
using ptrace+seccomp

udocker Pn modes
default mode

Isolation
Using shared library call interception

User application / service

System Call Interface (ABI)

Kernel

U
se

r S
pa

ce
C

on
ta

in
er

K
er

ne
l S

pa
ce

H
os

t

Shared libraries (libc)
Intercepting shared
library calls using the
loader LD_PRELOAD

udocker Fn modes

GitHub:
indigo-dc/udocker

Developed by LIP
in the
Indigo-dataCloud

Documentation

Releases

udocker
Execution modes

Mode Base Description

P1 PRoot PTRACE accelerated (with SECCOMP filtering) 🡸 DEFAULT

P2 PRoot PTRACE non-accelerated (without SECCOMP filtering)

R1 runC / Crun rootless unprivileged using user namespaces

R2 runC / Crun rootless unprivileged using user namespaces + P1

R3 runC / Crun rootless unprivileged using user namespaces + P2

F1 Fakechroot with loader as argument and LD_LIBRARY_PATH

F2 Fakechroot with modified loader, loader as argument and LD_LIBRARY_PATH

F3 Fakechroot modified loader and ELF headers of binaries + libs changed 🡸 FASTER

F4 Fakechroot modified loader and ELF headers dynamically changed

S1 Singularity where locally installed using chroot or user namespaces

udocker
Installation

$ curl -L \
 https://github.com/indigo-dc/udocker/releases/download/1.3.17/udocker-1.3.17.tar.gz \
 > udocker-1.3.17.tar.gz

untar the Python code. It is extracted to a directory called udocker

$ tar zxvf udocker-1.3.17.tar.gz

optionally add the just created udocker directory to the PATH

$ export PATH=$(pwd)/udocker-1.3.17/udocker:$PATH

install the binaries required to execute containers under $HOME/.udocker

$ udocker install

$ udocker version

udocker
Improvements

● Improved MPI support
○ Improved PMI interface to the batch system

● Handling of different platforms
○ Support for multiple architectures within udocker internals

○ Support for multiplatform image manifests version 2 schema 2

○ Pull or load images for architectures different from the host system

○ Emulation using QEMU user space in Pn modes

● Execution in different platforms
○ Pn: x86_64, x86, arm, arm64, armel, armhf

○ Rn: x86_64, arm64, ppc64le

○ Fn: x86_64, arm64, ppc64le

Containerization
Conclusions

● DT-GEO digital twin components
○ Include different applications and services

○ They will run on different environments both cloud and HPC

○ Workflows will be executed via PyCOMPSs that will invoke the containerized codes

● Different container execution tools are supported depending on
○ Application or service requirements

○ Hosting infrastructure (cloud, HPC etc)

● Next steps until the end of the project
○ Containerize applications and services as they became available

THANK YOU

linkedin.com/company/dt-geo/@dtgeo_euudocker@lip.pt

DT-GEO Containerisation
WP5 Volcanoes

DTC-V1 Volcanic unrest GALES code is available at https://gitlab.com/dgmaths9/gales
Most SS are very simple and should not require containerization
Some use machine learning and these should be containerized

DTC-V2 Forecast of volcanic
ash clouds and fallout

Plan docker images for use with docker or udocker
MET-get-GFS docker image in dockerhub
MET-get-ERA5 docker image in dockerhub
Singularity also being considered for HPC environments

DTC-V3 Lava flows Plan to use docker and Singularity for SS5301
Plan to use docker or udocker for the others

DTC-V4 Volcanic gases Plan to use udocker, much of the code has git repositories

DT-GEO Containerisation
WP6 Tsunamis

DTC-T1 Tsunami forecast
Seissol

Docker container images in Docker Hub: https://hub.docker.com/u/seissol
Singularity container built specifically for the Leonardo HPC system

DTC-T1 Tsunami forecast
Tsunami-HySEA

Singularity container built with eFlows4HPC image creation service for
Leonardo HPC

DTC-T1 Tsunami forecast
Landslide-HySea

Singularity container image to be built

DTC-T1 Tsunami forecast
BingClaw

Docker and singularity container images available

DTC-T1 Tsunami forecast
SHALTOP

Docker image available, plan to create a singularity image

DT-GEO Containerisation
WP7 Earthquakes

DTC-E1 Probabilistic Seismic
Hazard and Risk Assessment

Docker image available in Docker Hub

DTC-E2 Earthquake
short-term forecasting

Docker container image to be build for use with Docker and Kubernetes
Quakeflow includes Kubernetes helm charts and dockerfiles

DTC-E3 Ground Motion
Models

Docker container images to be built

DTC-E4 Fault rupture
forecasting

Docker or Singularity images, to be used with docker, udocker or Singularity

DTC-E5 Tomography and
shaking simulation

Docker images, to be used with docker, udocker or Singularity

DTC-E6 Rapid event and
shaking characterisation

Docker images, to be used with docker, udocker or Singularity

DT-GEO Containerisation
WP8 Anthropogenic Geophysical Extremes

DTC-AGEF1 Forecasting of
long range responses of
georeservoirs

Docker or Singularity image planned

DTC-AGEF2 Forecasting of
late responses of
georeservoirs

This DTC has the same SSs as DTC-AGEF1.

DTC-AGEF3 Modeling of
maximum magnitudes

Docker or Singularity image planned

DTC-AGEF4 Induced seismic
hazard map estimation

Docker or Singularity image planned
Docker image planned

Installation
from a release

$ curl -L \
 https://github.com/indigo-dc/udocker/releases/download/1.3.17/udocker-1.3.17.tar.gz \
 > udocker-1.3.17.tar.gz

untar the Python code. It is extracted to a directory called udocker

$ tar zxvf udocker-1.3.17.tar.gz

optionally add the just created udocker directory to the PATH

$ export PATH=$(pwd)/udocker-1.3.17/udocker:$PATH

install the binaries required to execute containers under $HOME/.udocker

$ udocker install

$ udocker version

Installation
from the source

$ git clone https://github.com/indigo-dc/udocker.git

$ cd udocker/udocker

create a logical link

$ ln -s maincmd.py udocker

optionally add the just created udocker directory to the PATH

$ export PATH=$(pwd):$PATH

install the binaries required to execute containers under $HOME/.udocker

$ udocker install

$ udocker version

Installation
using PyPI

Create Python 3 virtual env

$ python3 -m venv udockervenv

activate the virtual env

$ source udockervenv/bin/activate

$ ## install udocker from PyPI

$ pip install udocker

install the binaries required to execute containers

$ udocker install

$ udocker version

Installation
without outbound connectivity

$ wget \
 https://github.com/indigo-dc/udocker/releases/download/1.3.17/udocker-1.3.17.tar.gz

 ## Get the additional tools (executables, libraries, etc)

$ wget \
https://raw.githubusercontent.com/jorge-lip/udocker-builds/master/tarballs/udocker-englib-1.2.11.tar.gz

TRANSFER BOTH TARBALLS TO THE REMOTE SYSTEM and once transferred do:

$ tar zxvf udocker-1.3.17.tar.gz
$ export PATH=$(pwd)/udocker-1.3.17/udocker:$PATH

then install the binaries FROM THE TARBALL

$ export UDOCKER_TARBALL=“udocker-englib-1.2.11.tar.gz”
$ udocker install

THANK YOU

linkedin.com/company/dt-geo/@dtgeo_euudocker@lip.pt

