


### Iván Palomo Llavona

# **EAREVA** evaluator, validator & advisor

#### Fair data in the DT\_GEO project























#### Index

- What is FAIR data?
- What is the FAIR EVA?
- How does the FAIR EVA work?
- How has the FAIR data evolved in the DT-GEO context?





















#### What is FAIR data?

indable ressible nteroperable It refers to three types of entities: data (digital objects), metadata (information about the digital objects) and infrastructure (Where those digital objects live).

Indicators designed by











ABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS













#### **RDA** indicators

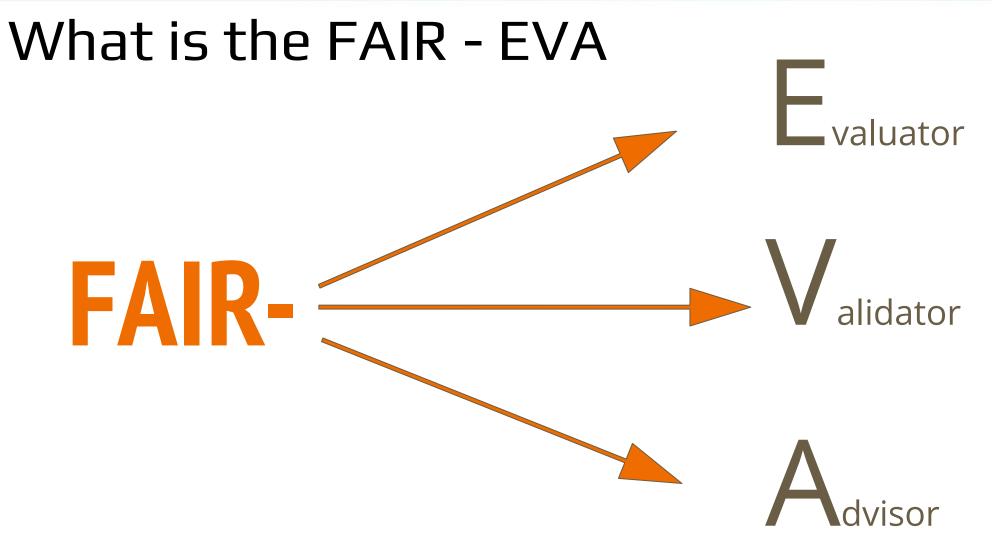
- □ F1: (Meta)data are assigned globally unique and persistent identifiers.
- A2: Metadata should be accessible even when the data is no longer available.
- I1: (Meta)data use a formal, accessible, shared, and broadly applicable language for knowledge representation.
- R1: (Meta)data are richly described with a plurality of accurate and relevant attributes




































 $\bigcirc$ 

FM UP

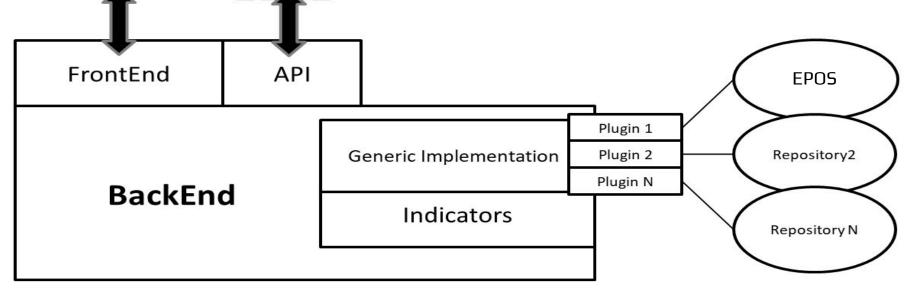




#### How does FAIR-EVA work

00

00.


00

00 |

User gives: ID and repository.

API: retrieves metadata from repository.

The tests are performed some generic and some specific for the Plugin.



















#### Example tests

|                  | Indicator  | Explanation                                                                                                  | Test performed                                                                                                                  |
|------------------|------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Findability      | RDA-f1-01d | Data is identified by a persistent<br>identifier                                                             | Search for identifier and validate it                                                                                           |
| Accesibility     | RDA-a1-01m | Metadata contains information<br>to enable the user to get access<br>to the data                             | The tool searches for a<br>download URL and the<br>license                                                                      |
| Interoperability | RDA-i1-01d | Data use a formal, accessible,<br>shared, and broadly applicable<br>language for knowledge<br>representation | Check that the file & data<br>format in the metadata<br>matches a controlled<br>vocabulary for example:<br>Internet Media Types |
| Reusability      | RDA-r1-01m | (Meta)data are richly described<br>with a plurality of accurate and<br>relevant attributes                   | Checks the existence of<br>metadata elements<br>related to reusability:<br>formats, license, spatial,<br>temporal               |



















| +              | ++    |
|----------------|-------|
| FAIR principle | Score |
| +              | ++    |
| Findable       | 66.14 |
| Accessible     | 88.95 |
| Interoperable  | 16.93 |
| Reusable       | 19.12 |
| +              | ++    |
| Total          | 50.38 |
| +              | ++    |

#### What does it return

| ID         | Indicator                                                                   | Score | Output                                                                                                       |
|------------|-----------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------|
| RDA-F1-01D | Data is identified by a persistent<br>  identifier                          | 0     | Identifier is not persistent for the data: DT5202                                                            |
| RDA-F1-01M | Metadata is identified by a persistent<br>  identifier                      | 100   | Found persistent identifier for the metadata:  <br>66d7604d-064f-4e81-a6e2-b539fbb2d91a                      |
| RDA-F1-02D | Data is identified by a persistent<br>  identifier                          | 0     | Identifier found for the data is not globally unique: DT5202  <br>                                           |
| RDA-F1-02M | Metadata is identified by a globally<br>  unique identifier                 | 100   | Found a globally unique identifier for the metadata:  <br>66d7604d-064f-4e81-a6e2-b539fbb2d91a               |
| RDA-F2-01M | Rich metadata is provided to allow<br>  discovery                           | 63    | Found 9 (out of 15) metadata elements matching 'Dublin Core  <br>  Metadata for Resource Discovery' elements |
| RDA-F3-01M | Metadata includes the identifier for the<br>  data                          | 100   | Metadata includes identifier/s for the data: ['DT5202']  <br>                                                |
| RDA-F4-01M | Metadata is offered in such a way that<br>  it can be harvested and indexed | 100   | Metadata is gathered programmatically through HTTP (API  <br>REST), thus can be harvested and indexed.       |

















HPC Now!



#### About DT-GEO



Real time data streams

High precision model of the earth

High fidelity models











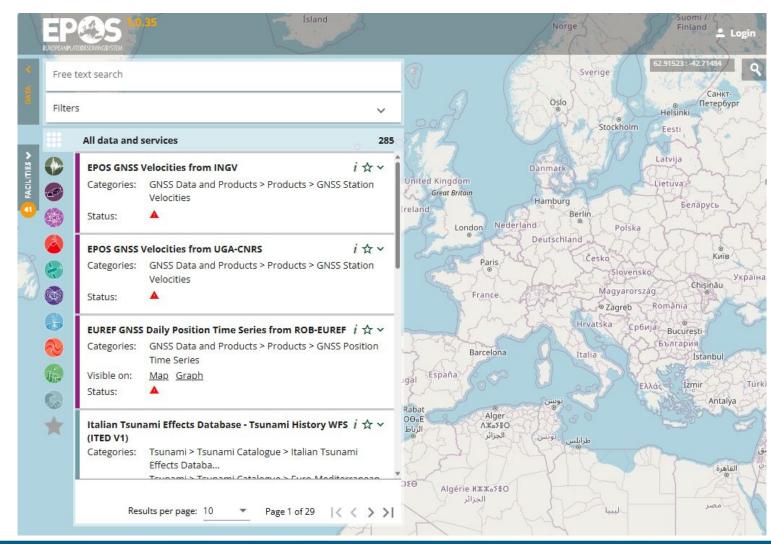













#### Image of epos data portal

# What are our tools?

We have the the Fair EVA.

And the EPOS Data Catalogue (Infrastructure)

























transfer

Security of data

Facility/equipm

ent ID

Unique ID constraints Datasets Privacy Facility/equipm Licensing URL constraints constraints Name Person name ent name Software **Curation and** WP 5-8 Facility/equipm Privacy provenance services obligations **Person email Maturity level** ent role Type constraints Need to be Curation and characterised Spatial Related provenance **Keywords Related DA Person role** relevance publications obligations Steps **Related DA** Descripti Security Temporal Quality relationship constraints relevance **Related DA** on assurance **Attributes** and default File Security of data Additional **Related DA** Workflows metadata values storage Organisation relationship format

Licensing

Person ID

Version



















#### Curation and vocabularies

Once a lot of the metadata was available we run into some issues analysing the metadata . For example: multiple cases of people using different terms to determine that their object was applicable to not just a specific region of the world.

This required more vocabularies to follow and cooperation from the reviewers to harmonize the metadata.

- "global\_coverage" for digital objects applicable to not just an specific region.
- "infinity" if the item has no explicit end date.
- SPDX is used for licenses
- Internet Media Types for formats

FM















#### The prototype data catalogue

In order to adapt to the new metadata categories not included in the EPOS Data catalogue. So a prototype was created in order to have more metadata to get a bigger score

Temporal metadata

Organisation and person roles

Provenance

File and data

format

















FM UP



### The EPOS plugin

The generic implementation of FAIR-EVA covers a wide array of repositories, however the creation of a plugin is required in order to work with DT-GEO metadata and the EPOS data catalogue.

- How to get the metadata from the EPOS data catalogue
- Some tests only required to look for the correct category
- Others required to look for more specific data on online platforms like Fairsharing or Internet Media Types.















FM



#### Tools and utilities developed

Some tools and utilities were developed for the FAIR EVA in order to facilitate its use.

- Its quite an exercise to find the UUIDs (Universally Unique Identifiers) that identify the digital objects in EPOS. So a searcher was added in order to find them by name.
- A python script was created that allows easy access to FAIR-EVA.
- FAIR-EVA was added to SQAaaS platform.
- In order to better manage the evaluation results we added the capability of storing them in csv and feather (fast-on-disk) formats.

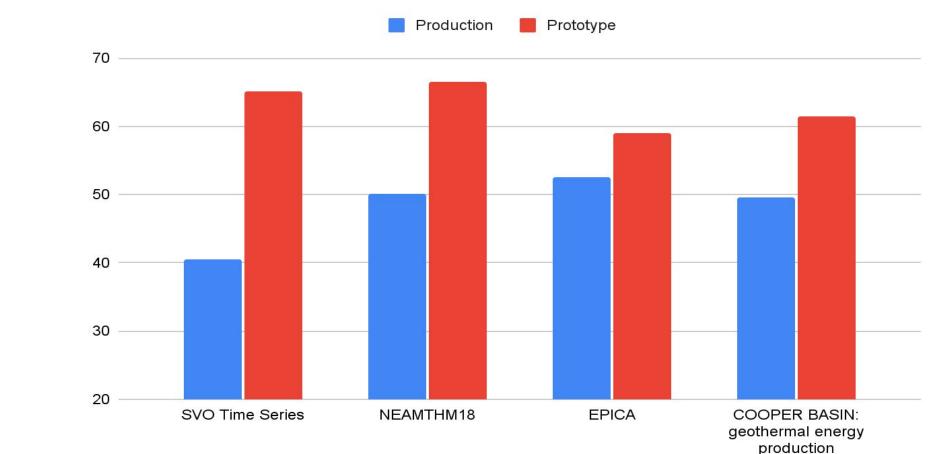



















#### Comparisons before and after



Items present in production and prototype DTCAT

















## Thanks for your attention!





















