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The	  Higgs	  boson	  discovered	  on	  the	  4th	  of	  July	  2012	  

Ø Is	  it	  the	  Higgs	  boson	  of	  the	  Standard	  Model?	  

Ø Is	  it	  the	  first	  scalar	  state	  of	  an	  enlarged	  Higgs	  sector?	  

Ø Is	  it	  a	  premoni_on	  for	  new	  	  
	  	  	  	  physics	  beyond	  the	  Standard	  
	  	  	  	  Model	  at	  the	  TeV	  scale?	  

Let’s	  look	  at	  a	  snapshop	  of	  	  
the	  current	  LHC	  Higgs	  data.	  

mH	  =125.09±0.21(stat.)±0.11(syst.)	  GeV	  



Values	  of	  the	  best-‐fit	  σ/σSM	  for	  the	  combina:on	  (solid	  ver:cal	  line)	  and	  for	  
subcombina:ons	  by	  predominant	  decay	  mode	  and	  addi:onal	  tags	  targe:ng	  
a	  par:cular	  produc:on	  mechanism.	  The	  ver_cal	  band	  shows	  the	  overall	  σ/σSM	  
uncertainty.	  The	  σ/σSM	  ra_o	  denotes	  the	  produc_on	  cross	  sec_on	  _mes	  the	  
relevant	  branching	  frac_ons,	  rela_ve	  to	  the	  SM	  expecta_on.	  The	  horizontal	  
bars	  indicate	  the	  ±1	  standard	  devia_on	  uncertain_es	  in	  the	  best-‐fit	  σ/σSM	  
values	  for	  the	  individual	  modes;	  they	  include	  both	  sta_s_cal	  and	  systema_c	  
uncertain_es.	  	  Taken	  from	  Eur.	  Phys.	  J.	  C75	  (2015)	  212.	  	  

Values	  of	  the	  best-‐fit	  σ/σSM	  for	  the	  combina:on	  (solid	  ver:cal	  line)	  and	  for	  
subcombina:ons	  by	  predominant	  decay	  mode.	  The	  ver_cal	  band	  shows	  the	  
overall	  σ/σSM	  uncertainty.	  The	  σ/σSM	  ra_o	  denotes	  the	  produc_on	  cross	  
sec_on	  _mes	  the	  relevant	  branching	  frac_ons,	  rela_ve	  to	  the	  SM	  expecta_on.	  
The	  horizontal	  bars	  indicate	  the	  ±1	  standard	  devia_on	  uncertain_es	  in	  the	  
best-‐fit	  σ/σSM	  values	  for	  the	  individual	  modes;	  they	  include	  both	  sta_s_cal	  and	  
systema_c	  uncertain_es.	  	  	  Taken	  from	  from	  Eur	  .Phys.	  J.	  C75	  (2015)	  212.	  	  

Evidence	  for	  a	  Standard	  Model	  (SM)—like	  Higgs	  boson	  



Taken	  from	  ATLAS-‐CONF-‐2015-‐007	  	  



Any	  theory	  that	  introduces	  new	  physics	  beyond	  the	  
Standard	  Model	  (SM)	  must	  contain	  a	  SM-‐like	  Higgs	  
boson.	  	  This	  constrains	  all	  future	  model	  building.	  

Mo_va_ons	  for	  an	  extended	  Higgs	  sector	  
	  

Ø  Theories	  that	  go	  beyond	  the	  SM	  oWen	  contain	  addi_onal	  
scalars	  

§  Example:	  the	  MSSM	  Higgs	  sector	  consists	  of	  two	  
complex	  doublets	  of	  scalar	  fields	  

Ø  Fermions	  appear	  in	  mul_ple	  genera_ons,	  so	  why	  not	  
addi_onal	  Higgs	  doublets	  as	  well?	  	  

§  Ul_mately,	  this	  must	  be	  decided	  by	  experiment.	  
	  	  



The Two-Higgs Doublet Model (2HDM) as a

prototype for an extended Higgs sector

The 2HDM consists of two scalar doublet, hypercharge-one fields, Φ1 and Φ2,

where 〈Φ0
a〉 = va/

√
2 (for a = 1, 2) are (possibly complex) vacuum expectation

values (vevs) subject to v2 ≡ |v1|2 + |v2|2 = (246 GeV)2. By assumption, the

minimum of the scalar potential conserves electric charge.

Employing the most general renormalizable scalar potential and Higgs-fermion
Yukawa couplings generically yields:

• CP-violating Higgs interactions;

• neutral Higgs mass eigenstates that are not eigenstates of CP;

• Flavor-changing neutral currents (FCNCs) mediated at tree-level by neutral
Higgs exchange.

The latter is not compatible with observed experimental constraints.



A CP-conserving 2HDM with no tree-level Higgs-mediated FCNCs

By imposing the (softly-broken) Z2 symmetry, Φ1 → +Φ1 ; Φ2 → −Φ2, the

resulting 2HDM naturally has no tree-level Higgs-mediated FCNCs. If we

further assume that the scalar potential V is CP-conserving, then

V = m2
11Φ

†
1Φ1 +m2

22Φ
†
2Φ2 −

(

m2
12Φ

†
1Φ2 + h.c.

)

+ 1
2λ1

(

Φ†
1Φ1

)2

+ 1
2λ2

(

Φ†
2Φ2

)2

+λ3Φ
†
1Φ1Φ

†
2Φ2 + λ4Φ

†
1Φ2Φ

†
2Φ1 +

[

1
2λ5

(

Φ†
1Φ2

)2

+ h.c.

]

,

where m2
12 softly breaks the Z2 symmetry. That is, the hard Z2 symmetry-

breaking term,
(

Φ†
1Φ2

)(

λ6Φ
†
1Φ1 + λ7Φ

†
2Φ2

)

+ h.c., is absent.

Note: we assume that the parameters m2
12 and λ5 are real and take on values

that are consistent with a CP-conserving vacuum, in which case the vevs,

v1 ≡ v cosβ , v2 ≡ v sinβ ,

can be chosen real and non-negative. In this convention, tanβ ≡ v2/v1 is

non-negative (i.e. 0 ≤ β ≤ 1
2π).



The Higgs–fermion interactions

When re-expressed in terms of the quark and lepton mass-eigenstate fields,

U = (u, c, t), D = (d, s, b), N = (νe, νµ, ντ), and E = (e, µ, τ),

−LY = ULΦ
0 ∗
a hU

a UR −DLK
†Φ−

a h
U
a UR + ULKΦ+

a h
D †
a DR +DLΦ

0
ah

D †
a DR

+NLΦ
+
a h

E †
a ER + ELΦ

0
ah

E †
a ER + h.c. , (summed over a = 1, 2)

where K is the CKM quark mixing matrix, hU,D,L are 3× 3 Yukawa coupling

matrices. Extending the non-trivial Z2 symmetry transformations to the right-

handed fermion fields leads to four distinct model types:

1. Type-I Yukawa couplings: hU
1 = hD

1 = hL
1 = 0,

2. Type-II Yukawa couplings: hU
1 = hD

2 = hL
2 = 0,

3. Type-X Yukawa couplings: hU
1 = hD

1 = hL
2 = 0,

4. Type-Y Yukawa couplings: hU
1 = hD

2 = hL
1 = 0.



The Higgs basis of the CP-conserving softly-broken Z2 symmetric 2HDM

It is convenient to define new Higgs doublet fields in the Higgs basis:

H1 =

(

H+
1

H0
1

)

≡ Φ1cβ +Φ2sβ , H2 =

(

H+
2

H0
2

)

≡ −Φ1sβ +Φ2cβ ,

in terms of the scalar fields Φ1,2 of the Z2-basis. Here, sβ ≡ sinβ, cβ ≡ cosβ,

etc. It follows that 〈H0
1〉 = v/

√
2 and 〈H0

2〉 = 0. The scalar potential is:

V = Y1H
†
1H1 + Y2H

†
2H2 + [Y3H

†
1H2 + h.c.] + 1

2Z1(H
†
1H1)

2

+1
2Z2(H

†
2H2)

2 + Z3(H
†
1H1)(H

†
2H2) + Z4(H

†
1H2)(H

†
2H1)

+
{

1
2Z5(H

†
1H2)

2 +
[

Z6(H
†
1H1) + Z7(H

†
2H2)

]

H†
1H2 + h.c.

}

.

Under the assumption of a CP-conserving scalar potential and vacuum, all

scalar potential parameters (Yi and Zi) can be taken real by a rephasing of H2.

By fixing a convention where tanβ is non-negative, the values of the Yi and

Zi are now uniquely defined.



After minimizing the scalar potential, Y1 = −1
2Z1v

2 and Y3 = −1
2Z6v

2.

The Zi (i = 1, . . . , 7) are linear combinations of the λi (i = 1, . . . , 5).

Z1 ≡ λ1c
4
β + λ2s

4
β + 1

2λ345s
2
2β ,

Z2 ≡ λ1s
4
β + λ2c

4
β + 1

2λ345s
2
2β ,

Zi ≡ 1
4s

2
2β

[

λ1 + λ2 − 2λ345

]

+ λi , (for i = 3, 4 or 5) ,

Z6 ≡ −1
2s2β

[

λ1c
2
β − λ2s

2
β − λ345c2β

]

,

Z7 ≡ −1
2s2β

[

λ1s
2
β − λ2c

2
β + λ345c2β

]

,

where λ345 ≡ λ3+λ4+λ5. Since there are five nonzero λi and seven nonzero Zi,

there must be two relations. The following two identities are satisfied,

Z2 = Z1 + 2(Z6 + Z7) cot 2β ,

Z345 =
1
2(Z1 + Z2) + 2(Z6 − Z7) cot 4β ,

where Z345 ≡ Z3 + Z4 + Z5.



Physical Higgs mass spectrum

The Higgs spectrum consists of two CP-even scalars, h andH (withmh ≤ mH),

one CP-odd scalar A and a charged Higgs pairH±. The corresponding squared-

masses of H± and A are

m2
H± = Y2 +

1
2Z3v

2 , m2
A = m2

H± + 1
2(Z4 − Z5)v

2 .

The CP-even scalars are identified by diagonalizing the 2 × 2 squared mass

matrix,

M2
H =

(

Z1v
2 Z6v

2

Z6v
2 m2

A + Z5v
2

)

.

In the Higgs basis, the mixing angle that diagonalizes the above matrix is

denoted by α− β. That is, the physical CP-even mass eignestates are:

H = (
√
2ReH0

1 − v)cβ−α −
√
2ReH0

2sβ−α ,

h = (
√
2ReH0

1 − v)sβ−α +
√
2ReH0

2cβ−α .



The following results will prove useful:

Z1v
2 = m2

hs
2
β−α +m2

Hc2β−α ,

Z6v
2 = (m2

h −m2
H)sβ−αcβ−α ,

m2
A + Z5v

2 = m2
Hs2β−α +m2

hc
2
β−α ,

which relates Z1, Z5 and Z6 directly to the physical scalar masses and the

mixing angle β − α. Note that the second equation above implies that

Z6sβ−αcβ−α ≤ 0.

The sign of Z6 is meaningful in a convention where tan β is non-negative [since

one cannot make a field redefinition H2 → −H2]. Since the mass eigenstate

fields h and H are only defined up to an overall sign, the mixing angle β − α

is only defined modulo π. It is convenient to choose 0 ≤ β − α ≤ π so that

sβ−α is non-negative, in which case the sign of cβ−α is equal to −sgnZ6.



The alignment limit

Let us revisit the CP-even Higgs squared-mass matrix,

M2
H =

(

Z1v
2 Z6v

2

Z6v
2 m2

A + Z5v
2

)

.

Since the Higgs basis fields satisfy 〈H0
1〉 = v/

√
2 and 〈H0

2〉 = 0, the couplings

of H1 are precisely those of the Standard Model (SM). Thus, in the alignment

limit, a SM-like Higgs boson exists which is roughly aligned with
√
2Re H0

1 −v.

That is, the mixing of H0
1 and H0

2 is subdominant, which implies that either

1. |Z6| ≪ 1, and/or

2. m2
A ≫ Ziv

2 for i = 1, 5 and 6, corresponding to the decoupling limit.

Moreover, if in addition Z1v
2 < m2

A + Z5v
2, then h is SM-like, whereas if

Z1v
2 > m2

A+Z5v
2, then H is SM-like. In both cases, the squared-mass of the

SM-like Higgs boson is approximately equal to Z1v
2.



Case 1: A SM-like h, with mh ≃ 125 GeV

Noting that the coupling of h to V V (where V = W± or Z) relative to that

of the SM Higgs boson hSM is given by ghV V /ghSMV V = sβ−α. It follows that

h is SM-like if sβ−α is close to 1, in which case |cβ−α| ≪ 1. The formulae,

m2
h =

(

Z1 + Z6
cβ−α

sβ−α

)

v2 ,

and

cβ−α =
−Z6v

2

√

(m2
H −m2

h)(m
2
H − Z1v2)

.

exhibit the expected properties of the alignment limit, which is achieved if

|Z6| ≪ 1 and/or mH ≫ mh. In either case, we have m2
h ≃ Z1v

2.

The case of mH ≫ mh is the well known decoupling limit, where the squared

mass differences between non-SM Higgs statesH±, H and A are ofO(v2). But,

the interesting possibility of alignment without decoupling arises if |Z6| ≪ 1.

In this case, h is SM-like and yet the non-SM-like Higgs states might not be

all that much heavier than h.



Case 2: A SM-like H with mH ≃ 125 GeV

Noting that the coupling of H to V V is given by gHV V /ghSMV V = cβ−α. In

this case, it is more useful to adopt a convention where cβ−α is non-negative,

so that sβ−α can be of either sign. It follows that H is SM-like if cβ−α is close

to 1, in which case |sβ−α| ≪ 1. The formulae,

m2
H =

(

Z1 − Z6
sβ−α

cβ−α

)

v2 ,

and

sβ−α =
−Z6v

2

√

(m2
H −m2

h)(Z1v2 −m2
h)

.

exhibit the expected properties of the alignment limit, which is achieved if

|Z6| ≪ 1, in which case m2
H ≃ Z1v

2. Note that no decoupling limit exists here

since the masses of H, A and H± are all of O(v).

Thus, the case of a SM-like H necessarily corresponds to the alignment limit

without decoupling.



Higgs-fermion Yukawa couplings revisited

For simplicity, we consider only Type-I and Type-II Yukawa couplings.

Type I and II Type I Type II

Higgs V V up quarks down quarks up quarks down quarks

and leptons and leptons

h sβ−α cα/sβ cα/sβ cα/sβ −sα/cβ

H cβ−α sα/sβ sα/sβ sα/sβ cα/cβ

A 0 cotβ − cotβ cotβ tan β

It is sometimes more convenient to write the couplings of h to fermions as

cα/sβ = sβ−α + cβ−α cot β ,

−sα/cβ = sβ−α − cβ−α tan β ,

In the limit of |cβ−α| ≪ 1, the h couplings approach their SM values, although

the approach to alignment is delayed if, e.g., |cβ−α| tanβ ∼ O(1).



|cβ−α| versus Ch
F (F = U or D) in Type I (left) and |cβ−α| versus Ch

U in Type II (right) with mH color code. The points with

Ch
U ≈ 1 and |cβ−α| > 0.03 are the points for which Ch

D ≈ −1 (the so-called opposite-sign Yukawa coupling points).

|cβ−α| versus Ch
D in Type II with mH color code for the full Ch

D range (left) and zooming on the Ch
D > 0 region (right). Points

are ordered from low to high mH in both sets of plots above.



Trilinear Higgs self-couplings

A few examples:

ghhh = −3v
[

Z1s
3
β−α + Z345sβ−αc

2
β−α + 3Z6cβ−αs

2
β−α + Z7c

3
β−α

]

,

gHhh = −3v
[

Z1cβ−αs
2
β−α + Z345cβ−α

(

1
3 − s2β−α

)

−Z6sβ−α(1− 3c2β−α)− Z7c
2
β−αsβ−α

]

,

ghH+H− = −v
[

Z3sβ−α + Z7cβ−α

]

,

Suppose that h is SM-like. Then, to study the behavior in the alignment limit

where |cβ−α| ≪ 1, it is convenient to write cβ−α = −ηZ6, where

η ≡ v2
√

(m2
H −m2

h)(m
2
H − Z1v2)

=















O(1) , for m2
H ∼ O(v2),

O
(

v2

m2
H

)

≪ 1 , in the decoupling limit.



Then,

ghhh = gSMhhh

{

1 +

[

(

Z345 − 3
2Z1

)

η2 − 2η

]

Z2
6

Z1
+O(η3Z3

6) +O(η2Z4
6)

}

,

where gSMhhh ≡ −3m2
h/v. In the decoupling limit (where η ≪ 1),

ghhh = gSMhhh

{

1− 2ηZ2
6

Z1
+O(η2Z2

6)

}

.

It follows that ghhh is always suppressed with respect to the SM in the

decoupling limit.

In contrast, in the alignment limit without decoupling, |Z6| ≪ 1 and η ∼ O(1).

In this case, in a region of parameter space where Z345 ≫ Z1 and ηZ345 ≫ 1,

we find that ghhh is enhanced with respect to the SM.

The Higgs self-couplings distinguish between the regime of alignment without

decoupling and the decoupling regime due to the explicit appearance of Z6 in

the self-couplings.



Likewise, for the case of a SM-like h close to the alignment limit,

gHhh = 3v
[

Z6 − (Z1 − 2
3Z345)cβ−α +O(c2β−α)

]

,

ghH+H− = −v
[

Z3 +O(cβ−α)
]

.

The Hhh coupling is suppressed in the alignment limit without decoupling,

while it can be of O(v) in the decoupling limit.

The hH+H− is relevant for the one loop decay h → γγ, which has a

contribution mediated by a H± loop. In the decoupling limit, the H± loop

amplitude is suppressed by a factor of O(v2/m2
H±) relative to the W± and the

top quark loop contributions. But, in the alignment limit without decoupling,

the H± loop is parametrically of the same order as the corresponding SM loop

contributions, thereby leading to a shift of the h → γγ decay rate from its SM

value (even though all tree-level couplings of h are SM-like).



Reduced triple Higgs coupling Chhh versus mH in Type I (left) and Type II (right) with mH color code. Points are ordered from

high to low mH values.

|cβ−α| versus Ch
γ in Type I (left) and Type II (right) with mH color code. Points are ordered from low to high mH .



Hybrid strategy for specifying input parameters

We choose as an input parameter set,

{mh,mH, cβ−α, tanβ, Z4, Z5, Z7} ,

in a convention where 0 ≤ β ≤ 1
2π and 0 ≤ β − α ≤ π.

Key features include:

• Uses the Higgs data to fix one CP-even Higgs mass and constrain the range

for cβ−α which is determined by the CP-even Higgs couplings to V V .

• Easy to implement theoretical constraints on parameters (e.g., perturbativity

limits for the Zi); useful for efficient 2HDM parameter scans.

• Easy to implement phenomenological constraints on parameters (e.g.,

restrictions in [tanβ ,mH±] parameter space due to B physics observables).



The masses of A and H± are determined by Z4 and Z5,

m2
A = m2

Hs2β−α +m2
hc

2
β−α − Z5v

2 ,

m2
H± = m2

A − 1
2(Z4 − Z5)v

2 .

Keeping Z4, Z5 ∼ O(1) ensures that unitarity, perturbativity and the S and T
constraints are respected. Three special cases employed in our scans:

mA = mH± ⇐⇒ Z4 = Z5 ,

mH = mH± and cβ−α = 0 =⇒ Z4 = −Z5 ,

mH = mA and cβ−α = 0 =⇒ Z5 = 0 .

Z7 can be traded in for the soft Z2 symmetry-breaking squared-mass term m2
12

or for the dimensionless coupling λ5, via

m 2
12

sβcβ
= m2

A + λ5v
2 = m2

Hs2β−α +m2
hc

2
β−α + 1

2 tan 2β(Z6 − Z7)v
2 ,

where Z6v
2 = (m2

h −m2
H)sβ−αcβ−α.



Benchmark scenarios

A. h is SM-like; mA ∼ mH± large to avoid B–constraints. Take Z4 = Z5 = −2
so that H is the second lightest Higgs boson. Search for H. Z7 = 0;
tanβ = 1 . . . 50.

B. H is SM-like, hV V (V = W± or Z) is weakly coupled. Search for h.
Z7 = 0; tanβ ∼ 1.5; mA ∼ mH± large.

C. h SM-like; mh ≃ mA; mA ∼ mH± large. Achieved by fine-tuning Z5.

D. h is SM-like; decay channels H → AZ and/or H → H±W∓ are open.

E. h is SM-like; “long cascade” decay channels H± → AW± → HZW± or
A → H±W∓ → HW+W− are open.

F. h has SM-like couplings to V V and up-type fermions. Coupling to down-
type fermions is SM-like in magnitude but opposite in sign (only possible for
Type-II) [cf. P.M. Ferreira et al., Phys. Rev. D 89, 115003 (2014)].

G. MSSM-like scenario for heavy Higgs bosons in a Type-II 2HDM.



Numerical Procedure

1. 2HDM constraints (e.g., vacuum stability, unitarity) implemented by the
code 2HDMC.

2. Numerical analysis of branching ratios and cross sections based on the codes
2HDMC and SusHi.

3. Implementing constraints from direct Higgs searches are evaluated using
HiggsBounds.

4. Implementing constraints due to the observation of a SM-like Higgs boson
are evaluated using HiggsSignals.

5. T -parameter constraints easily accommodated by takingm2
H±−m2

A
<∼ O(v2)

or m2
H± −m2

H
<∼ O(v2).

6. Flavor constraints apply in a pure 2HDM. The latest result of M. Misiak et
al., Phys. Rev. Lett. 114, 221801 (2015), based on the observed b → sγ
rate yields mH± >∼ 480 GeV at 95% CL in a Type-II 2HDM.



Scenario A (Non-alignment)

mh (GeV) mH (GeV) cβ−α Z4 Z5 Z7 tan β Type

A1.1 125 150 . . . 600 0.1 −2 −2 0 1 . . . 50 I

A1.2 125 150 . . . 600 0.1 ×
(

150 GeV
mH

)2

−2 −2 0 1 . . . 50 I

A2.1 125 150 . . . 600 0.01 −2 −2 0 1 . . . 50 II

A2.2 125 150 . . . 600 0.01 ×
(

150 GeV
mH

)2

−2 −2 0 1 . . . 50 II

• These are “simplified models” where mh = 125 GeV < mH < mA = mH±.

• All values of tanβ allowed and cβ−α <∼ 0.1 in Type-I; tan β <∼ 10 favored
and cβ−α <∼ 0.01 in Type-II.

• Cross sections are largest for low tan β (enhanced t-quark loop). Region of
enhanced b quark loop in Type-II at large tanβ disfavored by direct searches
for H and A.

• For Type-I at cβ−α = 0.1 and low tan β, H → V V dominate for mH <
250 GeV, H → hh dominates for mH = 250—350 GeV, H → tt̄ dominates
for mH > 350 GeV.

• For Type-II at cβ−α = 0.01, fermionic decays of H are most important. At
low tanβ H → hh can reach 10% BR for mH ∼ 300 GeV.



Direct constraints from LHC Higgs searches on the parameter space for the 2HDM Type-I (top) and Type-II (bottom) with
mH = 300 GeV (left) and mH = 600 GeV (right). In both cases mh = 125 GeV, Z4 = Z5 = −2 and Z7 = 0. The colors

indicate compatibility with the observed Higgs signal at 1σ (green), 2σ (yellow) and 3σ (blue). Exclusion bounds at 95% CL from
the non-observation of the additional Higgs states are overlaid in gray.



Parameter space of the non-aligned benchmark Scenario A with Type-I couplings, cβ−α = 0.1 (left) and Type-II Yukawa couplings,

cβ−α = 0.01 (right). The color coding is the same as in the previous figure.

Branching ratios of the Heavy Higgs boson, H, in scenario A with Type-I couplings for cos(β − α) = 0.1, tan β = 1.5 (left) and

tan β = 7 (right). Colors: H → W+W− (blue, solid), H → ZZ (red, solid), H → hh (green, solid), H → tt̄ (gray, short

dash), H → bb̄ (black, long dash), H → ττ (gray, long dash) and H → gg (black, short dash).



Scenario B (SM-like H)

mh (GeV) mH (GeV) cβ−α Z4 Z5 Z7 tan β Type

B1.1 65 . . . 120 125 1.0 −5 −5 0 1.5 I

B1.2 80 . . . 120 125 0.9 −5 −5 0 1.5 I

B2 65 . . . 120 125 1.0 −5 −5 0 1.5 II

These are “simplified models” where mh < mH = 125 GeV ≪ mA = mH±.

Allowed parameter regions for h in Scenario B with Type-I Yukawa couplings (left) and Type-II couplings (right).

The colors indicate statistical compatibility with the 125 GeV Higgs signal at 1σ (green), 2σ (yellow) and 3σ

(blue). The gray region is excluded at 95% C.L. by constraints from direct searches at LEP and the LHC.



Scenario C (CP-overlap)

mh mH mA mH± cβ−α λ5 tan β Type

C1 125 300 125 300 0 0 1 . . . 10 I

C2 125 300 125 300 0 0 1 . . . 10 II

In Scenario C with Type-I Yukawa couplings , the total ττ rate (adding gg and bb̄ production modes), relative

to the SM, from h (long dashes), A (short dashes) and their sum (green, solid). Right: the respective fractions

of the inclusive ττ rate resulting from h (long dashes) and A (short dashes).

In Type-II models, the signal strength Rττ > 1.5 for all tan β, since σ(bb̄ → A)

is enhanced at large tan β and σ(gg → A) is enhanced at small tanβ.



Scenario D (Short cascade)

mH (GeV) mass hierarchy Z4 Z5 Z7 tan β Type

D(1,2).1 250 . . . 500 mA < mH = mH± −1 1 −1 2 I, II

D(1,2).2 250 . . . 500 mH± < mH = mA 2 0 −1 2 I, II

D(1,2).3 250 . . . 500 mA = mH± < mH 1 1 −1 2 I, II

In all cases above, mh = 125 GeV and cos(β − α) = 0.

Branching ratios of H in Scenarios D(1,2).3 with mA = m
H± < mH for tanβ = 2 with Type-I (left) and

Type-II (right) Yukawa couplings. The colors show H → ZA (blue, solid), H → AA (blue, short dash),

H → W±H∓ (red, solid), H → H+H− (red, short dash), H → tt̄ (gray, dash) and H → bb̄ (black, long

dash) and H → ττ (gray, long dash).



Scenario E (Long cascade)

mh (GeV) mH (GeV) cβ−α Z4 Z5 Z7 tan β Type

E(1,2).1 125 200 . . . 300 0 −6 −2 0 2 I, II

E(1,2).2 125 200 . . . 300 0 1 −3 0 2 I, II

• Choose 2HDM parameters to allow two step decays involving all three non-SM Higgs

bosons. Assume that H is the lightest of the non-SM-like Higgs bosons.

• Competing decays: H± → AW± → HZW± and H± → W±H.

• Competing decays: A → H±W∓ → HW+W− and A → ZH

• Branching ratios for two step decays are typically in the range of 1–5%.

Masses (GeV) Branching ratios

Scenario mH mA mH± H± → W±A H± → W± H A → ZH A± → W±H∓

E1 200 402 532 0.053 0.79 0.62 –

300 460 577 0.041 0.74 0.39 –

E2 200 471 317 – 0.27 0.56 0.25

300 521 388 – 0.026 0.50 0.20

Mass spectrum and branching ratios of interesting decay modes in Scenario E.



Scenario F (Flipped Yukawa)

mh (GeV) mH (GeV) cβ−α Z4 Z5 Z7 tan β Type

F2 125 150 . . . 600 sin 2β −2 −2 0 5 . . . 50 II

As in Scenario A, we take mh < mH < mA = mH±. However, we fix cβ−α = s2β so that

ghbb

gSM
hbb

= sβ−α − cβ−α tan β = −1.

Direct constraints from LHC Higgs searches on the parameter space for the 2HDM Type-II with mH = 300 GeV

(left) and mH = 600 GeV (right). The colors indicate compatibility with the observed Higgs signal at 1σ

(green), 2 σ (yellow) and 3σ (blue). Exclusion bounds at 95% CL from the non-observation of the additional

Higgs states are overlaid in gray. The flipped Yukawa branch appears at larger values of cβ−α.



Scenario G (MSSM-like)

mh (GeV) mA (GeV) tan β Type

G2 125 90 . . . 1000 1 . . . 60 II

Inspired by the MSSM Higgs potential, we take λ1 = λ2 = 1
4(g

2 + g′2), λ3 = 1
4(g

2 − g′2),

λ4 = −1
2g

2, λ5 = λ6 = λ7 = 0, and m2
12 = m2

Asβcβ. Simulating the largest MSSM

radiative correction, we then shift λ2 → λ2 + δ and choose δ to fix mh = 125 GeV.

Allowed parameter space by direct Higgs search constraints in the “MSSM-like” Type-II 2HDM. The colors

indicate compatibility with the observed Higgs signal at 1σ (green), 2σ (yellow) and 3σ (blue). Exclusion

bounds at 95% CL from the non-observation of the additional Higgs states are overlaid in gray.



Scenario H: The Inert 2HDM (IDM)

If Z6 = Z7 = 0, then the minimum condition enforces Y3 = 0. In this case the

Z2 symmetry is manifest in the Higgs basis and it is unbroken by the vacuum.

If in addition we employ Type-I Yukawa couplings, then under a Z2 symmetry

transformation, H2 is odd and all other relevant fields (H1 and all left and

right handed fermion fields) are even.

Hence, either cβ−α = 0 (and h is the SM Higgs boson) or sβ−α = 0 (and H

is the SM Higgs boson). This is the exact alignment limit. The two other

neutral Higgs bosons, denoted arbitrarily by HI and AI obey the following

mass relations,

m2
AI

= m2
HI

− Z5v
2 , m2

H± = m2
HI

− 1
2(Z4 + Z5)v

2 .

However, there is no measurement that can determine the separate CP quantum

numbers of HI and AI (although they are relatively CP-odd). The lighter of

these two states can serve as a candidate for stable dark matter.



Future Directions

From purely phenomenological considerations, the softly-broken Z2-symmetric

CP-conserving 2HDM is more constrained than necessary. In order to avoid

tree-level Higgs-mediated FCNCs, it is sufficient to have (approximate) “flavor-

aligned” Higgs-fermion Yukawa interactions. Although such a model requires

an extra fine-tuning of parameters, it is not presently in conflict with data.

Thus, to be more general, one should not impose any discrete (or continuous)

symmetries on the scalar potential nor require CP-invariance.∗ In this more

general case, all the λi appear. Note that the λi are basis-dependent (as

is tan β), which implies that these parameters are unphysical. However, the

parameters of the Higgs basis and the neutral Higgs mixing angles computed

in the Higgs basis are physical physical parameters (up to a possible rephasing

ambiguity).

∗Ultimately, we would like experiment to decide whether these features are present in nature.



Thus, the methods of this work can be easily extended to the case of a more

general flavor-aligned 2HDM.

• The conditions of the alignment limit are easily obtained.

• The hybrid strategy for specifying input parameters would then consist of

{mh,mH±, s12, s13, Zi, αi},

where the Zi represent a set of Higgs basis parameters not constrained by the

first four parameters listed above, the αi are flavor alignment parameters,

and s12 and s13 are two mixing angles that emerge from the diagonalization

of the neutral Higgs squared mass matrix [details can be found in H.E. Haber

and D. O’Neil, Phys.. Rev. D74, 015018 (2016)].


