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The	
  Higgs	
  boson	
  discovered	
  on	
  the	
  4th	
  of	
  July	
  2012	
  

Ø Is	
  it	
  the	
  Higgs	
  boson	
  of	
  the	
  Standard	
  Model?	
  

Ø Is	
  it	
  the	
  first	
  scalar	
  state	
  of	
  an	
  enlarged	
  Higgs	
  sector?	
  

Ø Is	
  it	
  a	
  premoni_on	
  for	
  new	
  	
  
	
  	
  	
  	
  physics	
  beyond	
  the	
  Standard	
  
	
  	
  	
  	
  Model	
  at	
  the	
  TeV	
  scale?	
  

Let’s	
  look	
  at	
  a	
  snapshop	
  of	
  	
  
the	
  current	
  LHC	
  Higgs	
  data.	
  

mH	
  =125.09±0.21(stat.)±0.11(syst.)	
  GeV	
  



Values	
  of	
  the	
  best-­‐fit	
  σ/σSM	
  for	
  the	
  combina:on	
  (solid	
  ver:cal	
  line)	
  and	
  for	
  
subcombina:ons	
  by	
  predominant	
  decay	
  mode	
  and	
  addi:onal	
  tags	
  targe:ng	
  
a	
  par:cular	
  produc:on	
  mechanism.	
  The	
  ver_cal	
  band	
  shows	
  the	
  overall	
  σ/σSM	
  
uncertainty.	
  The	
  σ/σSM	
  ra_o	
  denotes	
  the	
  produc_on	
  cross	
  sec_on	
  _mes	
  the	
  
relevant	
  branching	
  frac_ons,	
  rela_ve	
  to	
  the	
  SM	
  expecta_on.	
  The	
  horizontal	
  
bars	
  indicate	
  the	
  ±1	
  standard	
  devia_on	
  uncertain_es	
  in	
  the	
  best-­‐fit	
  σ/σSM	
  
values	
  for	
  the	
  individual	
  modes;	
  they	
  include	
  both	
  sta_s_cal	
  and	
  systema_c	
  
uncertain_es.	
  	
  Taken	
  from	
  Eur.	
  Phys.	
  J.	
  C75	
  (2015)	
  212.	
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  by	
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  The	
  ver_cal	
  band	
  shows	
  the	
  
overall	
  σ/σSM	
  uncertainty.	
  The	
  σ/σSM	
  ra_o	
  denotes	
  the	
  produc_on	
  cross	
  
sec_on	
  _mes	
  the	
  relevant	
  branching	
  frac_ons,	
  rela_ve	
  to	
  the	
  SM	
  expecta_on.	
  
The	
  horizontal	
  bars	
  indicate	
  the	
  ±1	
  standard	
  devia_on	
  uncertain_es	
  in	
  the	
  
best-­‐fit	
  σ/σSM	
  values	
  for	
  the	
  individual	
  modes;	
  they	
  include	
  both	
  sta_s_cal	
  and	
  
systema_c	
  uncertain_es.	
  	
  	
  Taken	
  from	
  from	
  Eur	
  .Phys.	
  J.	
  C75	
  (2015)	
  212.	
  	
  

Evidence	
  for	
  a	
  Standard	
  Model	
  (SM)—like	
  Higgs	
  boson	
  



Taken	
  from	
  ATLAS-­‐CONF-­‐2015-­‐007	
  	
  



Any	
  theory	
  that	
  introduces	
  new	
  physics	
  beyond	
  the	
  
Standard	
  Model	
  (SM)	
  must	
  contain	
  a	
  SM-­‐like	
  Higgs	
  
boson.	
  	
  This	
  constrains	
  all	
  future	
  model	
  building.	
  

Mo_va_ons	
  for	
  an	
  extended	
  Higgs	
  sector	
  
	
  

Ø  Theories	
  that	
  go	
  beyond	
  the	
  SM	
  oWen	
  contain	
  addi_onal	
  
scalars	
  

§  Example:	
  the	
  MSSM	
  Higgs	
  sector	
  consists	
  of	
  two	
  
complex	
  doublets	
  of	
  scalar	
  fields	
  

Ø  Fermions	
  appear	
  in	
  mul_ple	
  genera_ons,	
  so	
  why	
  not	
  
addi_onal	
  Higgs	
  doublets	
  as	
  well?	
  	
  

§  Ul_mately,	
  this	
  must	
  be	
  decided	
  by	
  experiment.	
  
	
  	
  



The Two-Higgs Doublet Model (2HDM) as a

prototype for an extended Higgs sector

The 2HDM consists of two scalar doublet, hypercharge-one fields, Φ1 and Φ2,

where 〈Φ0
a〉 = va/

√
2 (for a = 1, 2) are (possibly complex) vacuum expectation

values (vevs) subject to v2 ≡ |v1|2 + |v2|2 = (246 GeV)2. By assumption, the

minimum of the scalar potential conserves electric charge.

Employing the most general renormalizable scalar potential and Higgs-fermion
Yukawa couplings generically yields:

• CP-violating Higgs interactions;

• neutral Higgs mass eigenstates that are not eigenstates of CP;

• Flavor-changing neutral currents (FCNCs) mediated at tree-level by neutral
Higgs exchange.

The latter is not compatible with observed experimental constraints.



A CP-conserving 2HDM with no tree-level Higgs-mediated FCNCs

By imposing the (softly-broken) Z2 symmetry, Φ1 → +Φ1 ; Φ2 → −Φ2, the

resulting 2HDM naturally has no tree-level Higgs-mediated FCNCs. If we

further assume that the scalar potential V is CP-conserving, then

V = m2
11Φ

†
1Φ1 +m2

22Φ
†
2Φ2 −

(

m2
12Φ

†
1Φ2 + h.c.

)

+ 1
2λ1

(

Φ†
1Φ1

)2

+ 1
2λ2

(

Φ†
2Φ2

)2

+λ3Φ
†
1Φ1Φ

†
2Φ2 + λ4Φ

†
1Φ2Φ

†
2Φ1 +

[

1
2λ5

(

Φ†
1Φ2

)2

+ h.c.

]

,

where m2
12 softly breaks the Z2 symmetry. That is, the hard Z2 symmetry-

breaking term,
(

Φ†
1Φ2

)(

λ6Φ
†
1Φ1 + λ7Φ

†
2Φ2

)

+ h.c., is absent.

Note: we assume that the parameters m2
12 and λ5 are real and take on values

that are consistent with a CP-conserving vacuum, in which case the vevs,

v1 ≡ v cosβ , v2 ≡ v sinβ ,

can be chosen real and non-negative. In this convention, tanβ ≡ v2/v1 is

non-negative (i.e. 0 ≤ β ≤ 1
2π).



The Higgs–fermion interactions

When re-expressed in terms of the quark and lepton mass-eigenstate fields,

U = (u, c, t), D = (d, s, b), N = (νe, νµ, ντ), and E = (e, µ, τ),

−LY = ULΦ
0 ∗
a hU

a UR −DLK
†Φ−

a h
U
a UR + ULKΦ+

a h
D †
a DR +DLΦ

0
ah

D †
a DR

+NLΦ
+
a h

E †
a ER + ELΦ

0
ah

E †
a ER + h.c. , (summed over a = 1, 2)

where K is the CKM quark mixing matrix, hU,D,L are 3× 3 Yukawa coupling

matrices. Extending the non-trivial Z2 symmetry transformations to the right-

handed fermion fields leads to four distinct model types:

1. Type-I Yukawa couplings: hU
1 = hD

1 = hL
1 = 0,

2. Type-II Yukawa couplings: hU
1 = hD

2 = hL
2 = 0,

3. Type-X Yukawa couplings: hU
1 = hD

1 = hL
2 = 0,

4. Type-Y Yukawa couplings: hU
1 = hD

2 = hL
1 = 0.



The Higgs basis of the CP-conserving softly-broken Z2 symmetric 2HDM

It is convenient to define new Higgs doublet fields in the Higgs basis:

H1 =

(

H+
1

H0
1

)

≡ Φ1cβ +Φ2sβ , H2 =

(

H+
2

H0
2

)

≡ −Φ1sβ +Φ2cβ ,

in terms of the scalar fields Φ1,2 of the Z2-basis. Here, sβ ≡ sinβ, cβ ≡ cosβ,

etc. It follows that 〈H0
1〉 = v/

√
2 and 〈H0

2〉 = 0. The scalar potential is:

V = Y1H
†
1H1 + Y2H

†
2H2 + [Y3H

†
1H2 + h.c.] + 1

2Z1(H
†
1H1)

2

+1
2Z2(H

†
2H2)

2 + Z3(H
†
1H1)(H

†
2H2) + Z4(H

†
1H2)(H

†
2H1)

+
{

1
2Z5(H

†
1H2)

2 +
[

Z6(H
†
1H1) + Z7(H

†
2H2)

]

H†
1H2 + h.c.

}

.

Under the assumption of a CP-conserving scalar potential and vacuum, all

scalar potential parameters (Yi and Zi) can be taken real by a rephasing of H2.

By fixing a convention where tanβ is non-negative, the values of the Yi and

Zi are now uniquely defined.



After minimizing the scalar potential, Y1 = −1
2Z1v

2 and Y3 = −1
2Z6v

2.

The Zi (i = 1, . . . , 7) are linear combinations of the λi (i = 1, . . . , 5).

Z1 ≡ λ1c
4
β + λ2s

4
β + 1

2λ345s
2
2β ,

Z2 ≡ λ1s
4
β + λ2c

4
β + 1

2λ345s
2
2β ,

Zi ≡ 1
4s

2
2β

[

λ1 + λ2 − 2λ345

]

+ λi , (for i = 3, 4 or 5) ,

Z6 ≡ −1
2s2β

[

λ1c
2
β − λ2s

2
β − λ345c2β

]

,

Z7 ≡ −1
2s2β

[

λ1s
2
β − λ2c

2
β + λ345c2β

]

,

where λ345 ≡ λ3+λ4+λ5. Since there are five nonzero λi and seven nonzero Zi,

there must be two relations. The following two identities are satisfied,

Z2 = Z1 + 2(Z6 + Z7) cot 2β ,

Z345 =
1
2(Z1 + Z2) + 2(Z6 − Z7) cot 4β ,

where Z345 ≡ Z3 + Z4 + Z5.



Physical Higgs mass spectrum

The Higgs spectrum consists of two CP-even scalars, h andH (withmh ≤ mH),

one CP-odd scalar A and a charged Higgs pairH±. The corresponding squared-

masses of H± and A are

m2
H± = Y2 +

1
2Z3v

2 , m2
A = m2

H± + 1
2(Z4 − Z5)v

2 .

The CP-even scalars are identified by diagonalizing the 2 × 2 squared mass

matrix,

M2
H =

(

Z1v
2 Z6v

2

Z6v
2 m2

A + Z5v
2

)

.

In the Higgs basis, the mixing angle that diagonalizes the above matrix is

denoted by α− β. That is, the physical CP-even mass eignestates are:

H = (
√
2ReH0

1 − v)cβ−α −
√
2ReH0

2sβ−α ,

h = (
√
2ReH0

1 − v)sβ−α +
√
2ReH0

2cβ−α .



The following results will prove useful:

Z1v
2 = m2

hs
2
β−α +m2

Hc2β−α ,

Z6v
2 = (m2

h −m2
H)sβ−αcβ−α ,

m2
A + Z5v

2 = m2
Hs2β−α +m2

hc
2
β−α ,

which relates Z1, Z5 and Z6 directly to the physical scalar masses and the

mixing angle β − α. Note that the second equation above implies that

Z6sβ−αcβ−α ≤ 0.

The sign of Z6 is meaningful in a convention where tan β is non-negative [since

one cannot make a field redefinition H2 → −H2]. Since the mass eigenstate

fields h and H are only defined up to an overall sign, the mixing angle β − α

is only defined modulo π. It is convenient to choose 0 ≤ β − α ≤ π so that

sβ−α is non-negative, in which case the sign of cβ−α is equal to −sgnZ6.



The alignment limit

Let us revisit the CP-even Higgs squared-mass matrix,

M2
H =

(

Z1v
2 Z6v

2

Z6v
2 m2

A + Z5v
2

)

.

Since the Higgs basis fields satisfy 〈H0
1〉 = v/

√
2 and 〈H0

2〉 = 0, the couplings

of H1 are precisely those of the Standard Model (SM). Thus, in the alignment

limit, a SM-like Higgs boson exists which is roughly aligned with
√
2Re H0

1 −v.

That is, the mixing of H0
1 and H0

2 is subdominant, which implies that either

1. |Z6| ≪ 1, and/or

2. m2
A ≫ Ziv

2 for i = 1, 5 and 6, corresponding to the decoupling limit.

Moreover, if in addition Z1v
2 < m2

A + Z5v
2, then h is SM-like, whereas if

Z1v
2 > m2

A+Z5v
2, then H is SM-like. In both cases, the squared-mass of the

SM-like Higgs boson is approximately equal to Z1v
2.



Case 1: A SM-like h, with mh ≃ 125 GeV

Noting that the coupling of h to V V (where V = W± or Z) relative to that

of the SM Higgs boson hSM is given by ghV V /ghSMV V = sβ−α. It follows that

h is SM-like if sβ−α is close to 1, in which case |cβ−α| ≪ 1. The formulae,

m2
h =

(

Z1 + Z6
cβ−α

sβ−α

)

v2 ,

and

cβ−α =
−Z6v

2

√

(m2
H −m2

h)(m
2
H − Z1v2)

.

exhibit the expected properties of the alignment limit, which is achieved if

|Z6| ≪ 1 and/or mH ≫ mh. In either case, we have m2
h ≃ Z1v

2.

The case of mH ≫ mh is the well known decoupling limit, where the squared

mass differences between non-SM Higgs statesH±, H and A are ofO(v2). But,

the interesting possibility of alignment without decoupling arises if |Z6| ≪ 1.

In this case, h is SM-like and yet the non-SM-like Higgs states might not be

all that much heavier than h.



Case 2: A SM-like H with mH ≃ 125 GeV

Noting that the coupling of H to V V is given by gHV V /ghSMV V = cβ−α. In

this case, it is more useful to adopt a convention where cβ−α is non-negative,

so that sβ−α can be of either sign. It follows that H is SM-like if cβ−α is close

to 1, in which case |sβ−α| ≪ 1. The formulae,

m2
H =

(

Z1 − Z6
sβ−α

cβ−α

)

v2 ,

and

sβ−α =
−Z6v

2

√

(m2
H −m2

h)(Z1v2 −m2
h)

.

exhibit the expected properties of the alignment limit, which is achieved if

|Z6| ≪ 1, in which case m2
H ≃ Z1v

2. Note that no decoupling limit exists here

since the masses of H, A and H± are all of O(v).

Thus, the case of a SM-like H necessarily corresponds to the alignment limit

without decoupling.



Higgs-fermion Yukawa couplings revisited

For simplicity, we consider only Type-I and Type-II Yukawa couplings.

Type I and II Type I Type II

Higgs V V up quarks down quarks up quarks down quarks

and leptons and leptons

h sβ−α cα/sβ cα/sβ cα/sβ −sα/cβ

H cβ−α sα/sβ sα/sβ sα/sβ cα/cβ

A 0 cotβ − cotβ cotβ tan β

It is sometimes more convenient to write the couplings of h to fermions as

cα/sβ = sβ−α + cβ−α cot β ,

−sα/cβ = sβ−α − cβ−α tan β ,

In the limit of |cβ−α| ≪ 1, the h couplings approach their SM values, although

the approach to alignment is delayed if, e.g., |cβ−α| tanβ ∼ O(1).



|cβ−α| versus Ch
F (F = U or D) in Type I (left) and |cβ−α| versus Ch

U in Type II (right) with mH color code. The points with

Ch
U ≈ 1 and |cβ−α| > 0.03 are the points for which Ch

D ≈ −1 (the so-called opposite-sign Yukawa coupling points).

|cβ−α| versus Ch
D in Type II with mH color code for the full Ch

D range (left) and zooming on the Ch
D > 0 region (right). Points

are ordered from low to high mH in both sets of plots above.



Trilinear Higgs self-couplings

A few examples:

ghhh = −3v
[

Z1s
3
β−α + Z345sβ−αc

2
β−α + 3Z6cβ−αs

2
β−α + Z7c

3
β−α

]

,

gHhh = −3v
[

Z1cβ−αs
2
β−α + Z345cβ−α

(

1
3 − s2β−α

)

−Z6sβ−α(1− 3c2β−α)− Z7c
2
β−αsβ−α

]

,

ghH+H− = −v
[

Z3sβ−α + Z7cβ−α

]

,

Suppose that h is SM-like. Then, to study the behavior in the alignment limit

where |cβ−α| ≪ 1, it is convenient to write cβ−α = −ηZ6, where

η ≡ v2
√

(m2
H −m2

h)(m
2
H − Z1v2)

=















O(1) , for m2
H ∼ O(v2),

O
(

v2

m2
H

)

≪ 1 , in the decoupling limit.



Then,

ghhh = gSMhhh

{

1 +

[

(

Z345 − 3
2Z1

)

η2 − 2η

]

Z2
6

Z1
+O(η3Z3

6) +O(η2Z4
6)

}

,

where gSMhhh ≡ −3m2
h/v. In the decoupling limit (where η ≪ 1),

ghhh = gSMhhh

{

1− 2ηZ2
6

Z1
+O(η2Z2

6)

}

.

It follows that ghhh is always suppressed with respect to the SM in the

decoupling limit.

In contrast, in the alignment limit without decoupling, |Z6| ≪ 1 and η ∼ O(1).

In this case, in a region of parameter space where Z345 ≫ Z1 and ηZ345 ≫ 1,

we find that ghhh is enhanced with respect to the SM.

The Higgs self-couplings distinguish between the regime of alignment without

decoupling and the decoupling regime due to the explicit appearance of Z6 in

the self-couplings.



Likewise, for the case of a SM-like h close to the alignment limit,

gHhh = 3v
[

Z6 − (Z1 − 2
3Z345)cβ−α +O(c2β−α)

]

,

ghH+H− = −v
[

Z3 +O(cβ−α)
]

.

The Hhh coupling is suppressed in the alignment limit without decoupling,

while it can be of O(v) in the decoupling limit.

The hH+H− is relevant for the one loop decay h → γγ, which has a

contribution mediated by a H± loop. In the decoupling limit, the H± loop

amplitude is suppressed by a factor of O(v2/m2
H±) relative to the W± and the

top quark loop contributions. But, in the alignment limit without decoupling,

the H± loop is parametrically of the same order as the corresponding SM loop

contributions, thereby leading to a shift of the h → γγ decay rate from its SM

value (even though all tree-level couplings of h are SM-like).



Reduced triple Higgs coupling Chhh versus mH in Type I (left) and Type II (right) with mH color code. Points are ordered from

high to low mH values.

|cβ−α| versus Ch
γ in Type I (left) and Type II (right) with mH color code. Points are ordered from low to high mH .



Hybrid strategy for specifying input parameters

We choose as an input parameter set,

{mh,mH, cβ−α, tanβ, Z4, Z5, Z7} ,

in a convention where 0 ≤ β ≤ 1
2π and 0 ≤ β − α ≤ π.

Key features include:

• Uses the Higgs data to fix one CP-even Higgs mass and constrain the range

for cβ−α which is determined by the CP-even Higgs couplings to V V .

• Easy to implement theoretical constraints on parameters (e.g., perturbativity

limits for the Zi); useful for efficient 2HDM parameter scans.

• Easy to implement phenomenological constraints on parameters (e.g.,

restrictions in [tanβ ,mH±] parameter space due to B physics observables).



The masses of A and H± are determined by Z4 and Z5,

m2
A = m2

Hs2β−α +m2
hc

2
β−α − Z5v

2 ,

m2
H± = m2

A − 1
2(Z4 − Z5)v

2 .

Keeping Z4, Z5 ∼ O(1) ensures that unitarity, perturbativity and the S and T
constraints are respected. Three special cases employed in our scans:

mA = mH± ⇐⇒ Z4 = Z5 ,

mH = mH± and cβ−α = 0 =⇒ Z4 = −Z5 ,

mH = mA and cβ−α = 0 =⇒ Z5 = 0 .

Z7 can be traded in for the soft Z2 symmetry-breaking squared-mass term m2
12

or for the dimensionless coupling λ5, via

m 2
12

sβcβ
= m2

A + λ5v
2 = m2

Hs2β−α +m2
hc

2
β−α + 1

2 tan 2β(Z6 − Z7)v
2 ,

where Z6v
2 = (m2

h −m2
H)sβ−αcβ−α.



Benchmark scenarios

A. h is SM-like; mA ∼ mH± large to avoid B–constraints. Take Z4 = Z5 = −2
so that H is the second lightest Higgs boson. Search for H. Z7 = 0;
tanβ = 1 . . . 50.

B. H is SM-like, hV V (V = W± or Z) is weakly coupled. Search for h.
Z7 = 0; tanβ ∼ 1.5; mA ∼ mH± large.

C. h SM-like; mh ≃ mA; mA ∼ mH± large. Achieved by fine-tuning Z5.

D. h is SM-like; decay channels H → AZ and/or H → H±W∓ are open.

E. h is SM-like; “long cascade” decay channels H± → AW± → HZW± or
A → H±W∓ → HW+W− are open.

F. h has SM-like couplings to V V and up-type fermions. Coupling to down-
type fermions is SM-like in magnitude but opposite in sign (only possible for
Type-II) [cf. P.M. Ferreira et al., Phys. Rev. D 89, 115003 (2014)].

G. MSSM-like scenario for heavy Higgs bosons in a Type-II 2HDM.



Numerical Procedure

1. 2HDM constraints (e.g., vacuum stability, unitarity) implemented by the
code 2HDMC.

2. Numerical analysis of branching ratios and cross sections based on the codes
2HDMC and SusHi.

3. Implementing constraints from direct Higgs searches are evaluated using
HiggsBounds.

4. Implementing constraints due to the observation of a SM-like Higgs boson
are evaluated using HiggsSignals.

5. T -parameter constraints easily accommodated by takingm2
H±−m2

A
<∼ O(v2)

or m2
H± −m2

H
<∼ O(v2).

6. Flavor constraints apply in a pure 2HDM. The latest result of M. Misiak et
al., Phys. Rev. Lett. 114, 221801 (2015), based on the observed b → sγ
rate yields mH± >∼ 480 GeV at 95% CL in a Type-II 2HDM.



Scenario A (Non-alignment)

mh (GeV) mH (GeV) cβ−α Z4 Z5 Z7 tan β Type

A1.1 125 150 . . . 600 0.1 −2 −2 0 1 . . . 50 I

A1.2 125 150 . . . 600 0.1 ×
(

150 GeV
mH

)2

−2 −2 0 1 . . . 50 I

A2.1 125 150 . . . 600 0.01 −2 −2 0 1 . . . 50 II

A2.2 125 150 . . . 600 0.01 ×
(

150 GeV
mH

)2

−2 −2 0 1 . . . 50 II

• These are “simplified models” where mh = 125 GeV < mH < mA = mH±.

• All values of tanβ allowed and cβ−α <∼ 0.1 in Type-I; tan β <∼ 10 favored
and cβ−α <∼ 0.01 in Type-II.

• Cross sections are largest for low tan β (enhanced t-quark loop). Region of
enhanced b quark loop in Type-II at large tanβ disfavored by direct searches
for H and A.

• For Type-I at cβ−α = 0.1 and low tan β, H → V V dominate for mH <
250 GeV, H → hh dominates for mH = 250—350 GeV, H → tt̄ dominates
for mH > 350 GeV.

• For Type-II at cβ−α = 0.01, fermionic decays of H are most important. At
low tanβ H → hh can reach 10% BR for mH ∼ 300 GeV.



Direct constraints from LHC Higgs searches on the parameter space for the 2HDM Type-I (top) and Type-II (bottom) with
mH = 300 GeV (left) and mH = 600 GeV (right). In both cases mh = 125 GeV, Z4 = Z5 = −2 and Z7 = 0. The colors

indicate compatibility with the observed Higgs signal at 1σ (green), 2σ (yellow) and 3σ (blue). Exclusion bounds at 95% CL from
the non-observation of the additional Higgs states are overlaid in gray.



Parameter space of the non-aligned benchmark Scenario A with Type-I couplings, cβ−α = 0.1 (left) and Type-II Yukawa couplings,

cβ−α = 0.01 (right). The color coding is the same as in the previous figure.

Branching ratios of the Heavy Higgs boson, H, in scenario A with Type-I couplings for cos(β − α) = 0.1, tan β = 1.5 (left) and

tan β = 7 (right). Colors: H → W+W− (blue, solid), H → ZZ (red, solid), H → hh (green, solid), H → tt̄ (gray, short

dash), H → bb̄ (black, long dash), H → ττ (gray, long dash) and H → gg (black, short dash).



Scenario B (SM-like H)

mh (GeV) mH (GeV) cβ−α Z4 Z5 Z7 tan β Type

B1.1 65 . . . 120 125 1.0 −5 −5 0 1.5 I

B1.2 80 . . . 120 125 0.9 −5 −5 0 1.5 I

B2 65 . . . 120 125 1.0 −5 −5 0 1.5 II

These are “simplified models” where mh < mH = 125 GeV ≪ mA = mH±.

Allowed parameter regions for h in Scenario B with Type-I Yukawa couplings (left) and Type-II couplings (right).

The colors indicate statistical compatibility with the 125 GeV Higgs signal at 1σ (green), 2σ (yellow) and 3σ

(blue). The gray region is excluded at 95% C.L. by constraints from direct searches at LEP and the LHC.



Scenario C (CP-overlap)

mh mH mA mH± cβ−α λ5 tan β Type

C1 125 300 125 300 0 0 1 . . . 10 I

C2 125 300 125 300 0 0 1 . . . 10 II

In Scenario C with Type-I Yukawa couplings , the total ττ rate (adding gg and bb̄ production modes), relative

to the SM, from h (long dashes), A (short dashes) and their sum (green, solid). Right: the respective fractions

of the inclusive ττ rate resulting from h (long dashes) and A (short dashes).

In Type-II models, the signal strength Rττ > 1.5 for all tan β, since σ(bb̄ → A)

is enhanced at large tan β and σ(gg → A) is enhanced at small tanβ.



Scenario D (Short cascade)

mH (GeV) mass hierarchy Z4 Z5 Z7 tan β Type

D(1,2).1 250 . . . 500 mA < mH = mH± −1 1 −1 2 I, II

D(1,2).2 250 . . . 500 mH± < mH = mA 2 0 −1 2 I, II

D(1,2).3 250 . . . 500 mA = mH± < mH 1 1 −1 2 I, II

In all cases above, mh = 125 GeV and cos(β − α) = 0.

Branching ratios of H in Scenarios D(1,2).3 with mA = m
H± < mH for tanβ = 2 with Type-I (left) and

Type-II (right) Yukawa couplings. The colors show H → ZA (blue, solid), H → AA (blue, short dash),

H → W±H∓ (red, solid), H → H+H− (red, short dash), H → tt̄ (gray, dash) and H → bb̄ (black, long

dash) and H → ττ (gray, long dash).



Scenario E (Long cascade)

mh (GeV) mH (GeV) cβ−α Z4 Z5 Z7 tan β Type

E(1,2).1 125 200 . . . 300 0 −6 −2 0 2 I, II

E(1,2).2 125 200 . . . 300 0 1 −3 0 2 I, II

• Choose 2HDM parameters to allow two step decays involving all three non-SM Higgs

bosons. Assume that H is the lightest of the non-SM-like Higgs bosons.

• Competing decays: H± → AW± → HZW± and H± → W±H.

• Competing decays: A → H±W∓ → HW+W− and A → ZH

• Branching ratios for two step decays are typically in the range of 1–5%.

Masses (GeV) Branching ratios

Scenario mH mA mH± H± → W±A H± → W± H A → ZH A± → W±H∓

E1 200 402 532 0.053 0.79 0.62 –

300 460 577 0.041 0.74 0.39 –

E2 200 471 317 – 0.27 0.56 0.25

300 521 388 – 0.026 0.50 0.20

Mass spectrum and branching ratios of interesting decay modes in Scenario E.



Scenario F (Flipped Yukawa)

mh (GeV) mH (GeV) cβ−α Z4 Z5 Z7 tan β Type

F2 125 150 . . . 600 sin 2β −2 −2 0 5 . . . 50 II

As in Scenario A, we take mh < mH < mA = mH±. However, we fix cβ−α = s2β so that

ghbb

gSM
hbb

= sβ−α − cβ−α tan β = −1.

Direct constraints from LHC Higgs searches on the parameter space for the 2HDM Type-II with mH = 300 GeV

(left) and mH = 600 GeV (right). The colors indicate compatibility with the observed Higgs signal at 1σ

(green), 2 σ (yellow) and 3σ (blue). Exclusion bounds at 95% CL from the non-observation of the additional

Higgs states are overlaid in gray. The flipped Yukawa branch appears at larger values of cβ−α.



Scenario G (MSSM-like)

mh (GeV) mA (GeV) tan β Type

G2 125 90 . . . 1000 1 . . . 60 II

Inspired by the MSSM Higgs potential, we take λ1 = λ2 = 1
4(g

2 + g′2), λ3 = 1
4(g

2 − g′2),

λ4 = −1
2g

2, λ5 = λ6 = λ7 = 0, and m2
12 = m2

Asβcβ. Simulating the largest MSSM

radiative correction, we then shift λ2 → λ2 + δ and choose δ to fix mh = 125 GeV.

Allowed parameter space by direct Higgs search constraints in the “MSSM-like” Type-II 2HDM. The colors

indicate compatibility with the observed Higgs signal at 1σ (green), 2σ (yellow) and 3σ (blue). Exclusion

bounds at 95% CL from the non-observation of the additional Higgs states are overlaid in gray.



Scenario H: The Inert 2HDM (IDM)

If Z6 = Z7 = 0, then the minimum condition enforces Y3 = 0. In this case the

Z2 symmetry is manifest in the Higgs basis and it is unbroken by the vacuum.

If in addition we employ Type-I Yukawa couplings, then under a Z2 symmetry

transformation, H2 is odd and all other relevant fields (H1 and all left and

right handed fermion fields) are even.

Hence, either cβ−α = 0 (and h is the SM Higgs boson) or sβ−α = 0 (and H

is the SM Higgs boson). This is the exact alignment limit. The two other

neutral Higgs bosons, denoted arbitrarily by HI and AI obey the following

mass relations,

m2
AI

= m2
HI

− Z5v
2 , m2

H± = m2
HI

− 1
2(Z4 + Z5)v

2 .

However, there is no measurement that can determine the separate CP quantum

numbers of HI and AI (although they are relatively CP-odd). The lighter of

these two states can serve as a candidate for stable dark matter.



Future Directions

From purely phenomenological considerations, the softly-broken Z2-symmetric

CP-conserving 2HDM is more constrained than necessary. In order to avoid

tree-level Higgs-mediated FCNCs, it is sufficient to have (approximate) “flavor-

aligned” Higgs-fermion Yukawa interactions. Although such a model requires

an extra fine-tuning of parameters, it is not presently in conflict with data.

Thus, to be more general, one should not impose any discrete (or continuous)

symmetries on the scalar potential nor require CP-invariance.∗ In this more

general case, all the λi appear. Note that the λi are basis-dependent (as

is tan β), which implies that these parameters are unphysical. However, the

parameters of the Higgs basis and the neutral Higgs mixing angles computed

in the Higgs basis are physical physical parameters (up to a possible rephasing

ambiguity).

∗Ultimately, we would like experiment to decide whether these features are present in nature.



Thus, the methods of this work can be easily extended to the case of a more

general flavor-aligned 2HDM.

• The conditions of the alignment limit are easily obtained.

• The hybrid strategy for specifying input parameters would then consist of

{mh,mH±, s12, s13, Zi, αi},

where the Zi represent a set of Higgs basis parameters not constrained by the

first four parameters listed above, the αi are flavor alignment parameters,

and s12 and s13 are two mixing angles that emerge from the diagonalization

of the neutral Higgs squared mass matrix [details can be found in H.E. Haber

and D. O’Neil, Phys.. Rev. D74, 015018 (2016)].


