Tutorial on Data Analysis

LIP internship program, 2024

perform a simple data analysis

- visualise the data
- manipulate data ntuples
- produce, process, and display data histograms
 - select different physics signals
 - plot kinematic distributions, inspect detector/trigger effects
- extract physics parameters from data
 - measure signal yields by performing a likelihood fit
 - inspect statistical and systematic errors

Typical detector at collider

calorimeters:

measure particle's energy by absorbing it

trackers:

detect trajectory of charged particles muons: detected in outer detector layers

The CMS detector

How do particles interact?

Two-muon events in CMS

First look at the code and data

- Open the notebook in google colab
 - Follow link (also in indico agenda)
 - If you never used google colab, follow instructions to set it up (simple login with your google account)
 - save a copy of the code in your area, so you can modify and run it
 - run the first blocks to set up root and open file with data
 - Let's have a look at the content of the file!

Two-muon invariant mass

particle identification

- signal in muon chambers
- → it's a muon!
- \implies m = m(µ) ~ 106MeV/c²

particle trajectory

- muon chambers but especially the silicon tracker
- Inear momentum, <u>p</u>≡(p_x,p_y,p_z)
- form 4-momentum of each muon: $\mathbf{P}_{\mu} \equiv (E, p_x, p_y, p_z)$
- \blacksquare that of the di-muon pair $\mathbf{P}_{\mu\mu} = \mathbf{P}_{\mu 1} + \mathbf{P}_{\mu 2} = \mathbf{P}_{\mathbf{X} \rightarrow \mu \mu}$
- invariant mass $\mathbf{P}_{\mu\mu} \cdot \mathbf{P}_{\mu\mu} = \mathbf{M}_{\mu\mu}^2 = (\mathbf{M}_{\mathbf{X}})^2$

The dimuon spectrum

Back to the code: plot the dimuon invariant mass

What are the peaks?

Check their measured properties at http://pdglive.lbl.gov

Fit the data!

- Choose your favourite peak (other than the J/ψ)
- Establish a fit model. Starting point:
 - signal: Gaussian function
 - background: exponential function
- Inspect quality of fit
 - can model be improved?
 - hint: final state radiation ($\mu \rightarrow \mu \gamma$) may distort shape
- Extract signal parameters
 - yield (N ± σ_{N})
 - mass (m ± σ_m)
- Estimate systematic errors
 - does the choice of fit model affect the measured results?
 - quantify the systematic variations by employing different models

 $\mu^{+}\mu^{-}$ mass spectrum with exponential and Gauss

- Quote final measurements
 - N ± σ_{stat} ± σ_{syst}

What do we learn from the yield?

Cross section

$$\frac{d^2\sigma(Q\overline{Q})}{dp_T dy}\mathcal{B}\left(Q\overline{Q} \to \mu^+\mu^-\right) = \frac{N_{fit}(Q\overline{Q})}{\mathcal{L} \cdot \mathcal{A} \cdot \epsilon \cdot \Delta p_T \cdot \Delta y}$$

an effective area of interaction unit: barn, $1b = 10^{-28} \text{ m}^2 = 100 \text{ fm}^2$

• N: fitted signal yield

22

- A: detector acceptance from simulation
- E: detector reconstruction and trigger efficiencies (simulation or data-driven)
- L: integrated sample luminosity