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Matter under extreme conditions
When kBT~EHa~10 keV, atoms dissociate into a plasma 
 
 
 

When kBT~ΛQCD~200 MeV hadrons expected to undergo a similar fate and 
form a quark-gluon plasma (QGP)
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• Lattice QCD calculations* show sharp increase in thermodynamical quantities 
at kbT~150 MeV=1.74 1012 K 
 
 
 
 
 
 
 
 

* for equal numbers of baryons and antibaryons
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Figure 5: Spline fits to the trace anomaly for several values of the lattice spacing aT = 1/N⌧ and the result of our continuum
extrapolation (left). Note that the error bands shown here do not include the 2% scale error. The right hand panel shows
suitably normalized pressure, energy density, and entropy density as a function of the temperature. In this case the 2% scale
error is included in the error bands. The dark lines show the prediction of the HRG model. The horizontal line at 95⇡2/60
in the right panel corresponds to the ideal gas limit for the energy density and the vertical band marks the crossover region,
Tc = (154± 9) MeV.

Figure 6: The comparison of the HISQ/tree and stout results
for the trace anomaly, the pressure, and the entropy density.

fixing cn = cd = 0 gives an excellent parametrization of
all our numerical data and is in good agreement with the
HRG estimate, at least down to T = 100 MeV. Further-
more, this parametrization agrees with the N⌧ = 8 data
well beyond T = 400 MeV.

The values of the parameters in our ansatz for the pres-
sure, Eq. (16), are summarized in Table II. The results
of this ansatz for the speed of sound, energy density, and
specific heat are compared with our continuum extrapo-
lated error bands in Figs. 7 and 8.

V. SPECIFIC HEAT, THE SPEED OF SOUND
AND DECONFINEMENT

All thermodynamic quantities, for fixed light and
strange quark masses, depend on a single parameter—
the temperature. In Section IV, we derived the basic
thermodynamic observables (✏, p, s) from the contin-
uum extrapolated trace anomaly ⇥µµ(T ). We now dis-
cuss two closely related observables that involve second
order derivatives of the QCD partition function with re-
spect to the temperature, i.e., the specific heat,
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The quantity Td(✏/T 4)/dT can be calculated directly
from the trace anomaly and its derivative with respect
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These identities show that the estimates for the specific
heat and the speed of sound should be of a quality similar
to ✏/T

4 or p/T
4. In Figs. 7 and 8, we show the agree-

ment between the bootstrap error bands for these quan-
tities and the estimates obtained by taking second or-
der derivatives of the analytic parameterization for p/T 4

given in Eq. 16. The latter are shown as dark lines inside
the bootstrap error bands.
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The quark-gluon plasma
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• In the non-interacting limit 
 

• Looks large. Is it? Compare with liquid 
water (non-relativistic, E≈mc2)
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• The quark-gluon plasma is upwards of 17 orders of magnitude more energetically 
dense than liquid water



• RHIC (@BNL), up to  =200GeV. LHC up to =5.5 TeV (5 so far). sNN sNN

• Two Lorentz-contracted nuclei collide

• Rapid formation (thermalization) of a near-thermal QGP (~1 fm/c)

• Expansion and cooling for ~10 fm/c, then

• Hadronization

Heavy-ion collisions
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• A large number of particles stream to the detectors

ALICE 1512.06104 (2015)

dNch/d⌘ = 1943± 54

• How do we characterize the medium properties?

Heavy-ion collisions
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Heavy-ion collisions
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• Use two classes of observables

1)Bulk properties: “macroscopic”,  
collective evolution of the fireball,  
effectively described by hydrodynamics

2)Hard probes: high-energy particles not in equilibrium with the medium (jets, 
photons/dileptons, quarkonia...)

2

Figure 1. Top: Dimuon invariant-mass (left) and pseudo-proper decay length (right)

distributions, for the J/ analysis [8]. The spectra are integrated over centrality, rapidity range

1.8 < |y| < 2.4, and pT range 4.5 < pT < 5.5 GeV/c. The projections of the two-dimensional fit

onto the respective axes are overlaid as solid black lines. The dashed red lines show the fitted

contribution of non-prompt J/ . The fitted background contributions are shown as dotted blue

lines. Bottom: Dimuon invariant-mass distributions used in the  (2S) analysis [9], for 9 < pT <
12 GeV/c, |y| < 1.6, and 0–100% centrality (left), and 3 < pT < 30 GeV/c, the 1.6 < |y| < 2.4

and 0–20% centrality (right).

Figure 2. Dimuon invariant mass distributions in pp (left) and PbPb (right) collisions for the

⌥ analysis [12]. In both figures, the results of the fits to the data are shown as solid blue lines.

The dashed red lines in the right panel are the result of the fits in PbPb (blue solid line) but

with the fitted ⌥ yield for each state scaled by the inverse of its measured RAA.

than 1.5% for pT smaller than 100 GeV/c. A more detailed description of the CMS detector

can be found in Ref. [7].

The invariant mass spectrum of all µ+µ�
pairs used in the J/ PbPb analysis [8] is shown in

Long range azimuthal correlations

z

Flow

Droplet of strongly interacting liquid:
Anisotropic explosion of fireball

Thermal particle ratios

2 2 Experimental method

Figure 1: Example of an unbalanced dijet in a PbPb collision event at ps
NN

= 2.76 TeV. Plot-
ted is the summed transverse energy in the electromagnetic and hadron calorimeters vs. h
and f, with the identified jets highlighted in red, and labeled with the corrected jet transverse
momentum.

The data provide information on the evolution of the dijet imbalance as a function of both
collision centrality (i.e., the degree of overlap of the two colliding nuclei) and the energy of
the leading jet. By correlating the dijets detected in the calorimeters with charged hadrons
reconstructed in the high-resolution tracker system, the modification of the jet fragmentation
pattern can be studied in detail, thus providing a deeper insight into the dynamics of the jet
quenching phenomenon.

The paper is organized as follows: the experimental setup, event triggering, selection and char-
acterization, and jet reconstruction are described in Section 2. Section 3 presents the results and
a discussion of systematic uncertainties, followed by a summary in Section 4.

2 Experimental method

The CMS detector is described in detail elsewhere [20]. The calorimeters provide hermetic
coverage over a large range of pseudorapidity, |h| < 5.2, where h = �ln [ tan(q/2)] and q is
the polar angle relative to the particle beam. In this study, jets are identified primarily using
the energy deposited in the lead-tungstate crystal electromagnetic calorimeter (ECAL) and the
brass/scintillator hadron calorimeter (HCAL) covering |h| < 3. In addition, a steel/quartz-
fiber Cherenkov calorimeter, called Hadron Forward (HF), covers the forward rapidities 3 <
|h| < 5.2 and is used to determine the centrality of the PbPb collision. Calorimeter cells are
grouped in projective towers of granularity in pseudorapidity and azimuthal angle given by
Dh ⇥ Dj = 0.087⇥ 0.087 at central rapidities, having a coarser segmentation at forward rapidi-
ties. The central calorimeters are embedded in a solenoid with 3.8 T central magnetic field. The
event display shown in Fig. 1 illustrates the projective calorimeter tower granularity over the
full pseudorapidity range. The CMS tracking system, located inside the calorimeter, consists
of pixel and silicon-strip layers covering |h| < 2.5, and provides track reconstruction down to
pT ⇡ 100 MeV/c, with a track momentum resolution of about 1% at pT = 100 GeV/c. A set
of scintillator tiles, the Beam Scintillator Counters (BSC), are mounted on the inner side of the



Jets in heavy-ion collisions
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Determining q̂ from experimental data JET Collaboration

• q̂ largely determines the rate of radiative energy loss in plasma

• Measure the yield of high momentum particles nucleus-nucleus events

RAA ⌘ dN/dpT yield in nucleus nucleus

dN/dpT yield in proton protonAuthor1 et al. / Nuclear Physics A 00 (2014) 1–4 3
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Figure 1. (Color online) Best fits to the suppression ratios of single hadron spectra in central (0-5%) Au+Au at
�
s = 200 GeV (left panel) and

Pb+Pb collisions at
�
s = 2.76 TeV (right panel) as compared to PHENIX data [14, 15] at RHIC and ALICE [16] and CMS data [17] at LHC.

the extracted values of strong coupling constant �s . The HT models assume that q̂ is independent of jet energy in this
study. The errors within each model are from the �2 fit with one standard deviation. The variation of q̂ values between
di�erent models can be considered as theoretical uncertainties. One therefore can extract its range of values at RHIC
and LHC as:

q̂
T 3
�
�
4.6 ± 1.2 at RHIC,
3.7 ± 1.4 at LHC,

at the highest temperatures reached in the most central Au+Au collisions at RHIC and Pb+Pb collisions at LHC. The
corresponding absolute values for q̂ for a 10 GeV quark jet are,

q̂ �
�
1.2 ± 0.3
1.9 ± 0.7 GeV2/fm at T=370 MeV,

T=470 MeV,

at an initial time �0 = 0.6 fm/c. These values are consistent with LO pQCD estimates, however, with a somewhat
small values of �s as obtained in CUJET, MARTINI and McGill-AMY model. The value of q̂N/T 3eft in cold nuclei as
extracted from jet quenching in DIS [5] is also shown here. The value of q̂N = 0.02 GeV2/fm is an order of magnitude
smaller than that in A+A collisions at RHIC and LHC.

In the immediate future, one should be able to carry out the same analyses at higher LHC energy and some
of the beam scanning energies at RHIC. Shown in Fig. 2 (left panel) as open boxes with question marks are the
predicted values of q̂ at future higher LHC energy and RHIC bean scanning energies. Together with the current values
at the LHC and the highest RHIC energy, one can obtain a rough temperature dependence of q̂/T 3. Furthermore,
comparisons to dihadron and gamma-hadron correlations can provide additional constraints on q̂.

In the long term future, one should develop and implement complete next-to-leading order calculations of parton
energy loss for further reduction of theoretical uncertainties. Though factorization of initial jet production and final-
state parton energy loss is assumed in all studies, it has never been explicitly proven nor illustrated. In a recent study,
the complete NLO calculations of transverse momentum weighted cross sections of semi-inclusive DIS (SIDIS) and
Drell-Yan processes in p+A collisions have been performed for the first time at twist-four [18]. The factorization of the
initial production hard processes and higher-twist matrix elements or q̂ in the final-state has been explicitly illustrated.
Furthermore, the QCD evolution of the twist-four parton correlation matrix which is related to q̂ has been identified.
One therefore can solve the evolution equation and determine the scale dependence of the jet transport parameter q̂.
Such evaluation of q̂ evolution has also been similarly performed [19]. This should be one of the long-term goals of
experimental studies of jet quenching in future high-energy heavy-ion collisions.

As a final remark, I would like to emphasize that q̂ represents the averaged transverse momentum broadening
squared for single partons. Therefore, broadening of dijet correlation in azimuthal angle is only indirectly related to
q̂. In a recent study within Linear Boltzmann Transport (LTB) model, the large angle tail of the dijet correlation is
shown to be sensitive to the value of q̂ [20]. High precision data are needed for any phenomenological study. The most

3

Fit: q̂ ' (3.7 ± 1.4) T
3

RAA =
YieldAA

Yieldpp ⇥Nbin

JET Collaboration

Leading hadron RAA
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Figure 7: The RAA for jets with |hjet| < 2.0 as functions of p
jet
T for various R and centrality

classes. The statistical uncertainties are represented by vertical lines, and the systematic un-
certainties by shaded boxes. The markers are placed at the bin centers. Global uncertainties
(integrated luminosity for pp and hTAAi for PbPb data) are shown as colored boxes on the
dashed line at RAA = 1 and are not included in the shaded boxes around the points.

Figure 11 shows a comparison of several models to RAA as functions of p
jet
T and R. The HYBRID

model [56] combines a perturbative description of the weakly coupled physics of jet production
and evolution, with a gauge/gravity duality description of the strongly coupled dynamics of
the medium, and the soft-gluon exchanges between the jet and medium. As the jet passes
through and deposits energy into the hydrodynamic medium, a wake is left behind the jet. The
HYBRID model (dark orange) tends to under-predict RAA at high p

jet
T . Calculations without a

wake (brown) and with only the positive contribution of the wake (yellow) are also shown.
These two are not physical and are included here only for better understanding of the effect of
the wake contribution. The effect of the wake is more important at large R and lower p

jet
T .

In the Linear Boltzmann Transport (LBT) model [83], the effects of recoil thermal partons and
their propagation in the dense medium are described by a 3+1D viscous relativistic hydro-
dynamic model. Predictions from LBT are shown in Fig. 11 with and without the medium
response. It is clear that the medium response becomes more and more dominant as the size
of the jet cone increases. A similar effect is seen for the jet-coupled fluid model [52, 84, 85]
CCNU. Although predictions are only available for a limited p

jet
T range, it is clear from compar-

ing the blue and violet points in Fig. 11 that the hydrodynamic component of CCNU becomes
increasingly important with increasing R.

The predictions from MARTINI [86] (Modular Algorithm for Relativistic Treatment of Heavy

2102.13080

Jet RAA
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• Two main effects of the presence of the medium

1)Transverse momentum broadening: interactions with the medium cause the 
hard partons with   in the jet to acquire transverse momentum

2)Medium-induced radiation: jet-medium interactions cause extra 
bremsstrahlung-like radiation of gluons that causes (out-of-cone) energy loss

p ≫ T
January 28, 2015 15:23 World Scientific Review Volume - 9.75in x 6.5in eloss

10 J. Ghiglieri and D. Teaney

(p, 0)

(p� !,�q?)

(!, q?)

Fig. 2. Schematic Feynman diagram contributing to the leading order collinear bremsstrahlung
rate. Hard gluon lines are labeled by their three momentum (pz ,p?). The interactions with the
random classical background bath are illustrated by the gluon lines with crosses. Only hard lines
which enter or exit the boxed region are included in an e↵ective Boltzmann description.

locoll

equation as a local rate, it must be understood that the emission process can only
be localized to within a time scale set by the formation time of the radiation. The
inverse formation time will be defined as the energy di↵erence between the initial
and final states

(⌧form)
�1

⌘ �E(h, p,!) = (E! + Ep�!)� Ep . (32)

Using the dispersion relation for the hard particles this reads
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2
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2
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2(p� !)
�

m
2
1 p

2p
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wherem2
1,p

is the asymptotic mass of the particle with momentum p, as summarized
in Eq. (8). We have further defined

h ⌘ pq? . (34)

As seen from the figure and described below, h/p is a transverse momentum vector
which is conjugate to the (transverse) coordinate separation x? between the initial
and final states.

The bremsstrahlung rate Ccoll is determined by the rate of transverse momen-
tum kicks (of magnitude q?) which a hard particle experiences traversing the soft
classical fields:

CR(q?) ⌘ lim
p!1

(2⇡)2
d�R(p,p+ q?)

d2q?
. (35){defcq}

Here p is the momentum of the hard particle, which is large (p ! 1) relative to
the the typical momentum, ⇠ gT , of the background fields. The collision kernel
CR can be expressed as a Wilson loop in the (x+

, x?) plane evaluated in the clas-
sical background,12,32,33 as sketched in Fig. 3. To motivate the appropriate Wilson
loop we note that the average squared momentum transfer per unit time (i.e. q̂) is
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equation as a local rate, it must be understood that the emission process can only
be localized to within a time scale set by the formation time of the radiation. The
inverse formation time will be defined as the energy di↵erence between the initial
and final states

(⌧form)
�1

⌘ �E(h, p,!) = (E! + Ep�!)� Ep . (32)

Using the dispersion relation for the hard particles this reads

�E(h, p,!) '
h
2

2p!(p� !)
+

m
2
1!

2!
+

m
2
1 p�!

2(p� !)
�

m
2
1 p

2p
, (33){defdeltaE}

wherem2
1,p

is the asymptotic mass of the particle with momentum p, as summarized
in Eq. (8). We have further defined

h ⌘ pq? . (34)

As seen from the figure and described below, h/p is a transverse momentum vector
which is conjugate to the (transverse) coordinate separation x? between the initial
and final states.

The bremsstrahlung rate Ccoll is determined by the rate of transverse momen-
tum kicks (of magnitude q?) which a hard particle experiences traversing the soft
classical fields:

CR(q?) ⌘ lim
p!1

(2⇡)2
d�R(p,p+ q?)

d2q?
. (35){defcq}

Here p is the momentum of the hard particle, which is large (p ! 1) relative to
the the typical momentum, ⇠ gT , of the background fields. The collision kernel
CR can be expressed as a Wilson loop in the (x+

, x?) plane evaluated in the clas-
sical background,12,32,33 as sketched in Fig. 3. To motivate the appropriate Wilson
loop we note that the average squared momentum transfer per unit time (i.e. q̂) is

January 28, 2015 15:23 World Scientific Review Volume - 9.75in x 6.5in eloss

10 J. Ghiglieri and D. Teaney

(p, 0)

(p� !,�q?)

(!, q?)

Fig. 2. Schematic Feynman diagram contributing to the leading order collinear bremsstrahlung
rate. Hard gluon lines are labeled by their three momentum (pz ,p?). The interactions with the
random classical background bath are illustrated by the gluon lines with crosses. Only hard lines
which enter or exit the boxed region are included in an e↵ective Boltzmann description.

locoll

equation as a local rate, it must be understood that the emission process can only
be localized to within a time scale set by the formation time of the radiation. The
inverse formation time will be defined as the energy di↵erence between the initial
and final states

(⌧form)
�1

⌘ �E(h, p,!) = (E! + Ep�!)� Ep . (32)

Using the dispersion relation for the hard particles this reads

�E(h, p,!) '
h
2

2p!(p� !)
+

m
2
1!

2!
+

m
2
1 p�!

2(p� !)
�

m
2
1 p

2p
, (33){defdeltaE}

wherem2
1,p

is the asymptotic mass of the particle with momentum p, as summarized
in Eq. (8). We have further defined

h ⌘ pq? . (34)

As seen from the figure and described below, h/p is a transverse momentum vector
which is conjugate to the (transverse) coordinate separation x? between the initial
and final states.

The bremsstrahlung rate Ccoll is determined by the rate of transverse momen-
tum kicks (of magnitude q?) which a hard particle experiences traversing the soft
classical fields:

CR(q?) ⌘ lim
p!1

(2⇡)2
d�R(p,p+ q?)

d2q?
. (35){defcq}

Here p is the momentum of the hard particle, which is large (p ! 1) relative to
the the typical momentum, ⇠ gT , of the background fields. The collision kernel
CR can be expressed as a Wilson loop in the (x+

, x?) plane evaluated in the clas-
sical background,12,32,33 as sketched in Fig. 3. To motivate the appropriate Wilson
loop we note that the average squared momentum transfer per unit time (i.e. q̂) is

January 28, 2015 15:23 World Scientific Review Volume - 9.75in x 6.5in eloss

10 J. Ghiglieri and D. Teaney

(p, 0)

(p� !,�q?)

(!, q?)

Fig. 2. Schematic Feynman diagram contributing to the leading order collinear bremsstrahlung
rate. Hard gluon lines are labeled by their three momentum (pz ,p?). The interactions with the
random classical background bath are illustrated by the gluon lines with crosses. Only hard lines
which enter or exit the boxed region are included in an e↵ective Boltzmann description.

locoll

equation as a local rate, it must be understood that the emission process can only
be localized to within a time scale set by the formation time of the radiation. The
inverse formation time will be defined as the energy di↵erence between the initial
and final states

(⌧form)
�1

⌘ �E(h, p,!) = (E! + Ep�!)� Ep . (32)

Using the dispersion relation for the hard particles this reads

�E(h, p,!) '
h
2

2p!(p� !)
+

m
2
1!

2!
+

m
2
1 p�!

2(p� !)
�

m
2
1 p

2p
, (33){defdeltaE}

wherem2
1,p

is the asymptotic mass of the particle with momentum p, as summarized
in Eq. (8). We have further defined

h ⌘ pq? . (34)

As seen from the figure and described below, h/p is a transverse momentum vector
which is conjugate to the (transverse) coordinate separation x? between the initial
and final states.

The bremsstrahlung rate Ccoll is determined by the rate of transverse momen-
tum kicks (of magnitude q?) which a hard particle experiences traversing the soft
classical fields:

CR(q?) ⌘ lim
p!1

(2⇡)2
d�R(p,p+ q?)

d2q?
. (35){defcq}

Here p is the momentum of the hard particle, which is large (p ! 1) relative to
the the typical momentum, ⇠ gT , of the background fields. The collision kernel
CR can be expressed as a Wilson loop in the (x+

, x?) plane evaluated in the clas-
sical background,12,32,33 as sketched in Fig. 3. To motivate the appropriate Wilson
loop we note that the average squared momentum transfer per unit time (i.e. q̂) is

January 28, 2015 15:23 World Scientific Review Volume - 9.75in x 6.5in eloss

10 J. Ghiglieri and D. Teaney

(p, 0)

(p� !,�q?)

(!, q?)

Fig. 2. Schematic Feynman diagram contributing to the leading order collinear bremsstrahlung
rate. Hard gluon lines are labeled by their three momentum (pz ,p?). The interactions with the
random classical background bath are illustrated by the gluon lines with crosses. Only hard lines
which enter or exit the boxed region are included in an e↵ective Boltzmann description.

locoll

equation as a local rate, it must be understood that the emission process can only
be localized to within a time scale set by the formation time of the radiation. The
inverse formation time will be defined as the energy di↵erence between the initial
and final states

(⌧form)
�1

⌘ �E(h, p,!) = (E! + Ep�!)� Ep . (32)

Using the dispersion relation for the hard particles this reads

�E(h, p,!) '
h
2

2p!(p� !)
+

m
2
1!

2!
+

m
2
1 p�!

2(p� !)
�

m
2
1 p

2p
, (33){defdeltaE}

wherem2
1,p

is the asymptotic mass of the particle with momentum p, as summarized
in Eq. (8). We have further defined

h ⌘ pq? . (34)

As seen from the figure and described below, h/p is a transverse momentum vector
which is conjugate to the (transverse) coordinate separation x? between the initial
and final states.

The bremsstrahlung rate Ccoll is determined by the rate of transverse momen-
tum kicks (of magnitude q?) which a hard particle experiences traversing the soft
classical fields:

CR(q?) ⌘ lim
p!1

(2⇡)2
d�R(p,p+ q?)

d2q?
. (35){defcq}

Here p is the momentum of the hard particle, which is large (p ! 1) relative to
the the typical momentum, ⇠ gT , of the background fields. The collision kernel
CR can be expressed as a Wilson loop in the (x+

, x?) plane evaluated in the clas-
sical background,12,32,33 as sketched in Fig. 3. To motivate the appropriate Wilson
loop we note that the average squared momentum transfer per unit time (i.e. q̂) is

January 28, 2015 15:23 World Scientific Review Volume - 9.75in x 6.5in eloss

10 J. Ghiglieri and D. Teaney

(p, 0)

(p� !,�q?)

(!, q?)

Fig. 2. Schematic Feynman diagram contributing to the leading order collinear bremsstrahlung
rate. Hard gluon lines are labeled by their three momentum (pz ,p?). The interactions with the
random classical background bath are illustrated by the gluon lines with crosses. Only hard lines
which enter or exit the boxed region are included in an e↵ective Boltzmann description.

locoll

equation as a local rate, it must be understood that the emission process can only
be localized to within a time scale set by the formation time of the radiation. The
inverse formation time will be defined as the energy di↵erence between the initial
and final states

(⌧form)
�1

⌘ �E(h, p,!) = (E! + Ep�!)� Ep . (32)

Using the dispersion relation for the hard particles this reads

�E(h, p,!) '
h
2

2p!(p� !)
+

m
2
1!

2!
+

m
2
1 p�!

2(p� !)
�

m
2
1 p

2p
, (33){defdeltaE}

wherem2
1,p

is the asymptotic mass of the particle with momentum p, as summarized
in Eq. (8). We have further defined

h ⌘ pq? . (34)

As seen from the figure and described below, h/p is a transverse momentum vector
which is conjugate to the (transverse) coordinate separation x? between the initial
and final states.

The bremsstrahlung rate Ccoll is determined by the rate of transverse momen-
tum kicks (of magnitude q?) which a hard particle experiences traversing the soft
classical fields:

CR(q?) ⌘ lim
p!1

(2⇡)2
d�R(p,p+ q?)

d2q?
. (35){defcq}

Here p is the momentum of the hard particle, which is large (p ! 1) relative to
the the typical momentum, ⇠ gT , of the background fields. The collision kernel
CR can be expressed as a Wilson loop in the (x+

, x?) plane evaluated in the clas-
sical background,12,32,33 as sketched in Fig. 3. To motivate the appropriate Wilson
loop we note that the average squared momentum transfer per unit time (i.e. q̂) is

January 28, 2015 15:23 World Scientific Review Volume - 9.75in x 6.5in eloss

10 J. Ghiglieri and D. Teaney

(p, 0)

(p� !,�q?)

(!, q?)

Fig. 2. Schematic Feynman diagram contributing to the leading order collinear bremsstrahlung
rate. Hard gluon lines are labeled by their three momentum (pz ,p?). The interactions with the
random classical background bath are illustrated by the gluon lines with crosses. Only hard lines
which enter or exit the boxed region are included in an e↵ective Boltzmann description.

locoll

equation as a local rate, it must be understood that the emission process can only
be localized to within a time scale set by the formation time of the radiation. The
inverse formation time will be defined as the energy di↵erence between the initial
and final states

(⌧form)
�1

⌘ �E(h, p,!) = (E! + Ep�!)� Ep . (32)

Using the dispersion relation for the hard particles this reads

�E(h, p,!) '
h
2

2p!(p� !)
+

m
2
1!

2!
+

m
2
1 p�!

2(p� !)
�

m
2
1 p

2p
, (33){defdeltaE}

wherem2
1,p

is the asymptotic mass of the particle with momentum p, as summarized
in Eq. (8). We have further defined

h ⌘ pq? . (34)

As seen from the figure and described below, h/p is a transverse momentum vector
which is conjugate to the (transverse) coordinate separation x? between the initial
and final states.

The bremsstrahlung rate Ccoll is determined by the rate of transverse momen-
tum kicks (of magnitude q?) which a hard particle experiences traversing the soft
classical fields:

CR(q?) ⌘ lim
p!1

(2⇡)2
d�R(p,p+ q?)

d2q?
. (35){defcq}

Here p is the momentum of the hard particle, which is large (p ! 1) relative to
the the typical momentum, ⇠ gT , of the background fields. The collision kernel
CR can be expressed as a Wilson loop in the (x+

, x?) plane evaluated in the clas-
sical background,12,32,33 as sketched in Fig. 3. To motivate the appropriate Wilson
loop we note that the average squared momentum transfer per unit time (i.e. q̂) is

January 28, 2015 15:23 World Scientific Review Volume - 9.75in x 6.5in eloss

10 J. Ghiglieri and D. Teaney

(p, 0)

(p� !,�q?)

(!, q?)

Fig. 2. Schematic Feynman diagram contributing to the leading order collinear bremsstrahlung
rate. Hard gluon lines are labeled by their three momentum (pz ,p?). The interactions with the
random classical background bath are illustrated by the gluon lines with crosses. Only hard lines
which enter or exit the boxed region are included in an e↵ective Boltzmann description.

locoll

equation as a local rate, it must be understood that the emission process can only
be localized to within a time scale set by the formation time of the radiation. The
inverse formation time will be defined as the energy di↵erence between the initial
and final states

(⌧form)
�1

⌘ �E(h, p,!) = (E! + Ep�!)� Ep . (32)

Using the dispersion relation for the hard particles this reads

�E(h, p,!) '
h
2

2p!(p� !)
+

m
2
1!

2!
+

m
2
1 p�!

2(p� !)
�

m
2
1 p

2p
, (33){defdeltaE}

wherem2
1,p

is the asymptotic mass of the particle with momentum p, as summarized
in Eq. (8). We have further defined

h ⌘ pq? . (34)

As seen from the figure and described below, h/p is a transverse momentum vector
which is conjugate to the (transverse) coordinate separation x? between the initial
and final states.

The bremsstrahlung rate Ccoll is determined by the rate of transverse momen-
tum kicks (of magnitude q?) which a hard particle experiences traversing the soft
classical fields:

CR(q?) ⌘ lim
p!1

(2⇡)2
d�R(p,p+ q?)

d2q?
. (35){defcq}

Here p is the momentum of the hard particle, which is large (p ! 1) relative to
the the typical momentum, ⇠ gT , of the background fields. The collision kernel
CR can be expressed as a Wilson loop in the (x+

, x?) plane evaluated in the clas-
sical background,12,32,33 as sketched in Fig. 3. To motivate the appropriate Wilson
loop we note that the average squared momentum transfer per unit time (i.e. q̂) is

Scattering centers in the 
medium



• Introduction to classical and quantum physics in jet broadening

• Double-logarithmic quantum corrections

• In the literature

• In a weakly-coupled QGP, and their connection with classical physics

• Work done in collaboration with Eamonn Weitz,  
PhD@Nantes in late 2023
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• Consider the broadening of a single parton:  is given by the second 
moment of the broadening probability with  process-dependent cutoff 
 

•  from a light-cone Wilson loop 

̂q
μ

P(k⊥)

Transverse momentum broadening
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Figure2.1:StaticWilsonloopwithedgesy1=(�TW/2,r/2),x1=(TW/2,r/2),y2=
(�TW/2,�r/2)andx2=(TW/2,�r/2).Timedirectionisfromlefttoright,thusthe
quarktrajectoriesarehorizontalandtheequal-timeendpointWilsonlinesarevertical.

wherePisthepath-orderingoperatorandtheintegrationcontour⇤isrepresentedin
Fig.2.1.TheWilsonloopvacuumamplitudecanalsobeexpressedasapathintegral

hW⇤i=
Z

DADqDqe�iS(0)
TrPexp

⇢
�ig

I

⇤
dxµAa

µ(x)Ta

�
(2.8)

whereqandqarethelightquarkfieldsandS(0)istheYang-Millspluslight-quarkaction
ofQCD.
Atzerothorderinthemultipoleexpansion(2.3)andinthestaticlimitthecorresponding
pNRQCDGreenfunctioncanbederivedfromtheLagrangian(1.37)

GpNRQCD=Z(0)

s(r)�3(x1�y1)�3(x2�y2)e�iTWV
(0)
s(r).(2.9)

Wenowneedtosingleoutthesoftscale:exploitingthefactthatthisscaleismuch
greaterthantheultrasoftscaleEwecanconsiderthelargeTWlimitoftheWilsonloop,
equivalenttothe�E!0limit.Wethushave

i

TW
loghW⇤i=u0(r)+i

u1(r)
TW

+O
✓

1
T2

W

◆
,(2.10)

andintheinfinite-timelimitthehigher-ordertermsinthe1/TWexpansionaresup-
pressed.Wehavealsodroppedtermsthatdonotdependonr,suchasselfenergies.
Thesetermscanarisebothintheperturbativeandnon-perturbativeregions,butare
notrelevantforthepotential.ThematchingconditionGNRQCD=GpNRQCDatthe
matchingscaleµ(thetwotheoriesandtheirGreenfunctionsareofcourseingeneral
notequal;theyaresoonlyintheregionwherepNRQCDexists)thenimplies

(
V(0)

s(r)=u0(r)
logZ(0)

s(r)=u1(r)
(2.11)

Soweseethatthepotentialatthisorderofthemultipoleexpansionissimplylinkedto
thevacuumexpectationvalueoftheWilsonloopbytherelation

V(0)

s(r)=u0(r)=�lim
TW!1

1
iTW

loghW⇤i.(2.12)
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• Broadening probability 
 

• IR Gaussian from multiple soft scatterings 
 
 
harmonic oscillator (HO) approximation
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Let us now verify that the above result reproduces the
expected asymptotic behavior at small and large trans-
verse momentum.

The (0) contribution matches exactly the MS solution
from Eq. (19), and thus its limiting behavior is easy
to analyse. At large momentum transfers, k2

� Q2

s,
P

(0)(k, L) decays exponentially with k, while if k2
⌧

Q2

s it becomes independent of k. More importantly,
the Gaussian profile implies that the typical momen-
tum transverse acquired due to momentum broadening
hk2

ityp⇠Q2

s. Therefore, P(0)(k, L) correctly captures the
physics associated to multiple soft scattering at scales
k2 . Q2

s.
For the (1) term, we use two limiting forms of the Ei

function. That is, when x ! 1, Ei(x) ⇡ ex(1/x+1/x2 +
2/x3) so that the large k behavior of the (1) term reads

P
(1)(k, L)

���
k2�Q2

s

= 4⇡
Q2

s0

k4
+ O

✓
Q4

s0

k6

◆
. (31)

This result matches Eq. (17) and therefore the (1) term
successfully encodes the hard 1/k4 tail of the full
P(k, L) distribution. As a consequence, it is physi-
cally preferable for phenomenological applications to
use Eq. (30) instead of Eq. (19). On the other end, x ! 0,
Ei(x) ⇡ �E + log x and then

P
(1)(k, L)

���
k2⌧Q2

s

=
4⇡�

Q2
s

log 4 a e1��E , (32)

which, up to a small constant logarithm, corresponds
to the MS result (Eq. (19)) in this kinematic limit, sup-
pressed by a power of �. This is analogous to the small
energy limit behavior obtained in [11–13] for the gluon
emission spectrum.

In Fig. 1, we evaluate Eq. (27) at (0), (1) order and their
sum (0)+(1). These curves are compared to the exact
numerical solution of Eq. (11) when plugging the GW
dipole cross-section given by Eq. (8). A small value of
the expansion parameter � is chosen on purpose such
that this figure represents a proof-of-concept of the pro-
posed scheme in its regime of validity. In the multi-
ple scattering regime, i.e. at small-k?, the (0) contri-
bution dominates over the (1) term as expected from
our asymptotic analysis. Nevertheless, the (0)+(1) curve
shows a small discrepancy, to be quantified in what fol-
lows, with respect to the full GW result. The situation
is improved at large-k?, where the (1) contribution cor-
rectly captures the power-law tail completely absent in
the (0) scenario. This figure demonstrates how a purely
analytic, two terms expansion given by Eq. (30) exhibits
an excellent agreement with the numerically obtained
P(k, L) using GW/HTL models for v(x).

The natural question arises as to what is the value of
the �-parameter at which the expansion fails to repro-
duce the GW result. This problem, together with the role
of higher orders, is tackled in Fig. 2. In the top panel we
observe how the performance of the (0)+(1) truncation
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Figure 1. Momentum broadening probability distribution at
different orders in Molière’s-expansion (see Eq. (25)) com-
pared to the exact result for GW (see Eq. (8)) with � = 0.1
corresponding to (Q2

s0 = 30 GeV2, m2

D = 0.13 GeV2). In this
and following figures kT ⌘ |k|.

is degraded when increasing � both at low and large k.
This result is expected as the larger � gets, the less pre-
cise is to consider �v(x) as perturbative contribution in
Eq. (20). The relevant values of � for current and fu-
ture colliders will be discussed in Section V. As shown
in the bottom panel of Fig. 2 this discrepancy can be al-
leviated by adding extra terms in the expansion. In par-
ticular, when adding the (2) (see Eq. (25)) contribution
for �=0.1 we find a ratio to the exact GW result close to
one in the whole interval in k. Unfortunately, we were
not able to find yet a general analytic expression for the
n-th term in the series, thus higher orders have to be
computed numerically.

IV. SENSITIVITY TO IR MODELING UP TO
NEXT-TO-LEADING POWER ORDER REMOVE[VIA A
TWIST EXPANSION]: GW AND HTL COMPARISON

In the previous Section, as a first step towards an an-
alytic expression for P(k, L) that encompasses the main
physical mechanisms, we have expanded the dipole
cross-section to leading power order (see Eq. (15)). In
order to assess the sensitivity of transverse momentum
broadening to the non-perturbative infrared structure of
a given model for �(q), going beyond the leading power
(LP) term is mandatory. In what follows, we fix the hard
scale of the problem Qs0 such that we are only sensi-
tive to the dependence of this expansion with respect
to the infrared regulator µ⇤. Consequently, these ad-
ditional terms are expected to modify the low momen-
tum regime of P(k, L). Hence, this will be the explored
region in the figures of this section. At this point, we
would like to emphasize that the expansion in universal
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equation as a local rate, it must be understood that the emission process can only
be localized to within a time scale set by the formation time of the radiation. The
inverse formation time will be defined as the energy di↵erence between the initial
and final states

(⌧form)
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wherem2
1,p

is the asymptotic mass of the particle with momentum p, as summarized
in Eq. (8). We have further defined

h ⌘ pq? . (34)

As seen from the figure and described below, h/p is a transverse momentum vector
which is conjugate to the (transverse) coordinate separation x? between the initial
and final states.

The bremsstrahlung rate Ccoll is determined by the rate of transverse momen-
tum kicks (of magnitude q?) which a hard particle experiences traversing the soft
classical fields:

CR(q?) ⌘ lim
p!1

(2⇡)2
d�R(p,p+ q?)

d2q?
. (35){defcq}

Here p is the momentum of the hard particle, which is large (p ! 1) relative to
the the typical momentum, ⇠ gT , of the background fields. The collision kernel
CR can be expressed as a Wilson loop in the (x+

, x?) plane evaluated in the clas-
sical background,12,32,33 as sketched in Fig. 3. To motivate the appropriate Wilson
loop we note that the average squared momentum transfer per unit time (i.e. q̂) is
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Let us now verify that the above result reproduces the
expected asymptotic behavior at small and large trans-
verse momentum.

The (0) contribution matches exactly the MS solution
from Eq. (19), and thus its limiting behavior is easy
to analyse. At large momentum transfers, k2
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(0)(k, L) decays exponentially with k, while if k2
⌧
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s it becomes independent of k. More importantly,
the Gaussian profile implies that the typical momen-
tum transverse acquired due to momentum broadening
hk2
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s. Therefore, P(0)(k, L) correctly captures the
physics associated to multiple soft scattering at scales
k2 . Q2

s.
For the (1) term, we use two limiting forms of the Ei

function. That is, when x ! 1, Ei(x) ⇡ ex(1/x+1/x2 +
2/x3) so that the large k behavior of the (1) term reads
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This result matches Eq. (17) and therefore the (1) term
successfully encodes the hard 1/k4 tail of the full
P(k, L) distribution. As a consequence, it is physi-
cally preferable for phenomenological applications to
use Eq. (30) instead of Eq. (19). On the other end, x ! 0,
Ei(x) ⇡ �E + log x and then

P
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log 4 a e1��E , (32)

which, up to a small constant logarithm, corresponds
to the MS result (Eq. (19)) in this kinematic limit, sup-
pressed by a power of �. This is analogous to the small
energy limit behavior obtained in [11–13] for the gluon
emission spectrum.

In Fig. 1, we evaluate Eq. (27) at (0), (1) order and their
sum (0)+(1). These curves are compared to the exact
numerical solution of Eq. (11) when plugging the GW
dipole cross-section given by Eq. (8). A small value of
the expansion parameter � is chosen on purpose such
that this figure represents a proof-of-concept of the pro-
posed scheme in its regime of validity. In the multi-
ple scattering regime, i.e. at small-k?, the (0) contri-
bution dominates over the (1) term as expected from
our asymptotic analysis. Nevertheless, the (0)+(1) curve
shows a small discrepancy, to be quantified in what fol-
lows, with respect to the full GW result. The situation
is improved at large-k?, where the (1) contribution cor-
rectly captures the power-law tail completely absent in
the (0) scenario. This figure demonstrates how a purely
analytic, two terms expansion given by Eq. (30) exhibits
an excellent agreement with the numerically obtained
P(k, L) using GW/HTL models for v(x).

The natural question arises as to what is the value of
the �-parameter at which the expansion fails to repro-
duce the GW result. This problem, together with the role
of higher orders, is tackled in Fig. 2. In the top panel we
observe how the performance of the (0)+(1) truncation
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Figure 1. Momentum broadening probability distribution at
different orders in Molière’s-expansion (see Eq. (25)) com-
pared to the exact result for GW (see Eq. (8)) with � = 0.1
corresponding to (Q2

s0 = 30 GeV2, m2

D = 0.13 GeV2). In this
and following figures kT ⌘ |k|.

is degraded when increasing � both at low and large k.
This result is expected as the larger � gets, the less pre-
cise is to consider �v(x) as perturbative contribution in
Eq. (20). The relevant values of � for current and fu-
ture colliders will be discussed in Section V. As shown
in the bottom panel of Fig. 2 this discrepancy can be al-
leviated by adding extra terms in the expansion. In par-
ticular, when adding the (2) (see Eq. (25)) contribution
for �=0.1 we find a ratio to the exact GW result close to
one in the whole interval in k. Unfortunately, we were
not able to find yet a general analytic expression for the
n-th term in the series, thus higher orders have to be
computed numerically.
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In the previous Section, as a first step towards an an-
alytic expression for P(k, L) that encompasses the main
physical mechanisms, we have expanded the dipole
cross-section to leading power order (see Eq. (15)). In
order to assess the sensitivity of transverse momentum
broadening to the non-perturbative infrared structure of
a given model for �(q), going beyond the leading power
(LP) term is mandatory. In what follows, we fix the hard
scale of the problem Qs0 such that we are only sensi-
tive to the dependence of this expansion with respect
to the infrared regulator µ⇤. Consequently, these ad-
ditional terms are expected to modify the low momen-
tum regime of P(k, L). Hence, this will be the explored
region in the figures of this section. At this point, we
would like to emphasize that the expansion in universal
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equation as a local rate, it must be understood that the emission process can only
be localized to within a time scale set by the formation time of the radiation. The
inverse formation time will be defined as the energy di↵erence between the initial
and final states
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wherem2
1,p

is the asymptotic mass of the particle with momentum p, as summarized
in Eq. (8). We have further defined

h ⌘ pq? . (34)

As seen from the figure and described below, h/p is a transverse momentum vector
which is conjugate to the (transverse) coordinate separation x? between the initial
and final states.

The bremsstrahlung rate Ccoll is determined by the rate of transverse momen-
tum kicks (of magnitude q?) which a hard particle experiences traversing the soft
classical fields:
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Here p is the momentum of the hard particle, which is large (p ! 1) relative to
the the typical momentum, ⇠ gT , of the background fields. The collision kernel
CR can be expressed as a Wilson loop in the (x+

, x?) plane evaluated in the clas-
sical background,12,32,33 as sketched in Fig. 3. To motivate the appropriate Wilson
loop we note that the average squared momentum transfer per unit time (i.e. q̂) is
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Fig. 1. Hard 2 $ 2 collision contributing the collision rate C2$2[µ]. Only hard lines which
enter or exit the boxed region are included in an e↵ective Boltzmann description.

hard2to2

ways this divergence can be regulated. At leading and next-to-leading we find
it convenient16 to simply cuto↵ the transverse momentum exchange at small q?,
q? > µ. It is not di�cult to extract the logarithmic dependence on µ for µ ⌧

T . Indeed, let us consider for illustration a leading-log approximation to C2$2[µ]:
we expand the distribution function and matrix elements to second order in the
exchange momentum Q and arrive at a Fokker-Planck equation21–23 for fp

C2$2[µ] = êUV (µ) v
i
@fp

@pi
+

1

2
q̂
ij

UV (µ)
@
2
fp

@pi@pj
+O

✓
T

p

◆
+ µ-independent , (12){eq:twotwoexpand}

In writing this equation we have dropped terms suppressed by T/p. Here v̂ is a unit
vector in the direction of p, and the di↵usion tensor qijUV (µ) controls the longitudinal
and transverse momentum di↵usion,

q̂
ij

UV (µ) ⌘ q̂L,UV (µ)v̂
i
v̂
j +

1

2
q̂UV (µ)(�

ij
� v̂

i
v̂
j) . (13)

The values of these coe�cients are found from the expansion of Eq. (10), and for
pure gauge are at leading log

q̂UV (µ) =g
2
CAT

m
2

D

2⇡
log

✓
T

µ

◆
, (14){uvqhat}

q̂L,UV (µ) =g
2
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m
2
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log

✓
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◆
. (15)

Here the Debye mass is given by the integral over distribution functions

m
2

D
= 2g2CA

Z
d
3
p

(2⇡)3
np(1 + np)

T
=

1

3
g
2
CAT

2
, (16){eq:md}

and the asymptotic mass is given by a similar integral in Eq. (8). At this point
the interpretation of these thermodynamic integrals as the Debye and asymptotic
masses is premature. This interpretation will be clear from Sec. 3, which explains
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Figure2.1:StaticWilsonloopwithedgesy1=(�TW/2,r/2),x1=(TW/2,r/2),y2=
(�TW/2,�r/2)andx2=(TW/2,�r/2).Timedirectionisfromlefttoright,thusthe
quarktrajectoriesarehorizontalandtheequal-timeendpointWilsonlinesarevertical.

wherePisthepath-orderingoperatorandtheintegrationcontour⇤isrepresentedin
Fig.2.1.TheWilsonloopvacuumamplitudecanalsobeexpressedasapathintegral

hW⇤i=
Z

DADqDqe�iS(0)
TrPexp

⇢
�ig

I

⇤
dxµAa

µ(x)Ta

�
(2.8)

whereqandqarethelightquarkfieldsandS(0)istheYang-Millspluslight-quarkaction
ofQCD.
Atzerothorderinthemultipoleexpansion(2.3)andinthestaticlimitthecorresponding
pNRQCDGreenfunctioncanbederivedfromtheLagrangian(1.37)

GpNRQCD=Z(0)

s(r)�3(x1�y1)�3(x2�y2)e�iTWV
(0)
s(r).(2.9)

Wenowneedtosingleoutthesoftscale:exploitingthefactthatthisscaleismuch
greaterthantheultrasoftscaleEwecanconsiderthelargeTWlimitoftheWilsonloop,
equivalenttothe�E!0limit.Wethushave

i

TW
loghW⇤i=u0(r)+i

u1(r)
TW

+O
✓

1
T2

W

◆
,(2.10)

andintheinfinite-timelimitthehigher-ordertermsinthe1/TWexpansionaresup-
pressed.Wehavealsodroppedtermsthatdonotdependonr,suchasselfenergies.
Thesetermscanarisebothintheperturbativeandnon-perturbativeregions,butare
notrelevantforthepotential.ThematchingconditionGNRQCD=GpNRQCDatthe
matchingscaleµ(thetwotheoriesandtheirGreenfunctionsareofcourseingeneral
notequal;theyaresoonlyintheregionwherepNRQCDexists)thenimplies

(
V(0)

s(r)=u0(r)
logZ(0)

s(r)=u1(r)
(2.11)

Soweseethatthepotentialatthisorderofthemultipoleexpansionissimplylinkedto
thevacuumexpectationvalueoftheWilsonloopbytherelation

V(0)

s(r)=u0(r)=�lim
TW!1

1
iTW

loghW⇤i.(2.12)
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Basic picture of weakly coupled plasma – hard particles and soft fields

Hard particle modes, P ⇠ T

Soft field modes, P ⇠ gT

↵s = g2/4⇡

• The soft fields can be treated classically since their occupation number is large

nB(!) =
1

e!/T � 1
' T

!
⇠ 1

g

Figure by D. Teaney

Hard particles, P~T

Soft field 
modes 
P~gT

↵s =
g2

4⇡

• Hard (quasi)-particles (quarks and gluons) carry most of the stress-energy tensor. 
(Parametrically) largest contribution to thermodynamics

The weak-coupling picture
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Hard particles, P~T

Soft field 
modes 
P~gT

↵s =
g2

4⇡

The weak-coupling picture

• The gluonic soft fields have large occupation numbers ⇒ they can be treated 
classically. Emergence of collective effects

nB(!) =
1

e!/T � 1

!⇠gT
' T

!
⇠ 1
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• Classical (soft gluon) corrections to the scattering/broadening kernel  
can be problematic for perturbation theory, Linde problem

• Breakthrough: soft classical modes at space-like separations become  
Euclidean and time-independent

• Horrible HTL perturbative calculation or extremely challenging 4D lattice on the 
light-cone become 3D Electrostatic QCD (EQCD).  

Classical gluons in the scattering kernel

g g

nB(p) ∼ T/p ∼ 1/g
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(d)(c)(b)(a) (e) (f) (g)

Figure 3: Tree and one-loop diagrams contributing to C(q⊥).

should cause no confusion; “
∫

p” is short for
∫

d3p
(2π)3 ):

C(q⊥)(b)/g
2TCs =

δΠ00(q⊥)

(q2⊥+m2
D)

2
− δΠzz(q⊥)

q4⊥
,

δΠ00(q)

g2TCA
= −

∫

p

[

(2q⊥ − p)2

p2((q⊥−p)2 +m2
D)

− 3

p2

]

,

δΠzz(q)

g2TCA
= −

∫

p

[

2p2z
(p2+m2

D)((q⊥−p)2+m2
D)

− 1

p2+m2
D

]

−
∫

p

[

3p2z + 2q2⊥ + p2

p2(q⊥−p)2
− 2

p2
− p2z

p2(q⊥−p)2

]

. (11)

Each bracket includes the contributions of one fish and one tadpole diagram, while the
last one also includes the ghost loop.

The (linear) ultraviolet divergences in (11) are to be canceled by matching counter-
terms that can be unambiguously calculated within the framework of dimensional re-
duction [37, 38]. They merely represent the (hard thermal loop) coupling of the n ̸= 0
gluons to the soft n = 0 ones, e.g. the gluon contribution to the A0 mass squared
m2

D. The fact that the direct coupling to exchange gluons with q0 = q3 ̸= 0 does not
contribute to the divergences can also be checked explicitly, from the convergence, with
respect to q3, of the real-time integral (22) (this justifies making the soft approximation
on q0). Thus the divergences in (11) do not signal the presence of “new contributions”
beyond the EQCD effective theory, as discussed in section 3.2.

Employing dimensional regularization, the divergences simply go away8 and the
counter-terms are zero to O(g) [38]. This way we obtain (all our arctangents run from
0 to π/2):

C(q⊥)(b)
g4T 2CsCA

=
−mD − 2

q2
⊥
−m2

D

q⊥
tan−1

(

q⊥
mD

)

4π(q2⊥+m2
D)

2
+

7

32q3⊥
+
mD − q2

⊥
+4m2

D

2q⊥
tan−1

(

q⊥
2mD

)

8πq4⊥
(12)

8 The dimensionally-regulated integrals (11) have poles in dimensions 2 and 4 but are finite and
unambiguous in dimension 3.
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• Classical (soft gluon) corrections to the scattering/broadening kernel  
can be problematic for perturbation theory, Linde problem

• Breakthrough: soft classical modes at space-like separations become  
Euclidean and time-independent

• Horrible HTL perturbative calculation or extremely challenging 4D lattice on the 
light-cone become 3D Electrostatic QCD (EQCD).  

Classical gluons in the scattering kernel

g g

nB(p) ∼ T/p ∼ 1/g
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Figure2.1:StaticWilsonloopwithedgesy1=(�TW/2,r/2),x1=(TW/2,r/2),y2=
(�TW/2,�r/2)andx2=(TW/2,�r/2).Timedirectionisfromlefttoright,thusthe
quarktrajectoriesarehorizontalandtheequal-timeendpointWilsonlinesarevertical.

wherePisthepath-orderingoperatorandtheintegrationcontour⇤isrepresentedin
Fig.2.1.TheWilsonloopvacuumamplitudecanalsobeexpressedasapathintegral

hW⇤i=
Z

DADqDqe�iS(0)
TrPexp

⇢
�ig

I

⇤
dxµAa

µ(x)Ta

�
(2.8)

whereqandqarethelightquarkfieldsandS(0)istheYang-Millspluslight-quarkaction
ofQCD.
Atzerothorderinthemultipoleexpansion(2.3)andinthestaticlimitthecorresponding
pNRQCDGreenfunctioncanbederivedfromtheLagrangian(1.37)

GpNRQCD=Z(0)

s(r)�3(x1�y1)�3(x2�y2)e�iTWV
(0)
s(r).(2.9)

Wenowneedtosingleoutthesoftscale:exploitingthefactthatthisscaleismuch
greaterthantheultrasoftscaleEwecanconsiderthelargeTWlimitoftheWilsonloop,
equivalenttothe�E!0limit.Wethushave

i

TW
loghW⇤i=u0(r)+i

u1(r)
TW

+O
✓

1
T2

W

◆
,(2.10)

andintheinfinite-timelimitthehigher-ordertermsinthe1/TWexpansionaresup-
pressed.Wehavealsodroppedtermsthatdonotdependonr,suchasselfenergies.
Thesetermscanarisebothintheperturbativeandnon-perturbativeregions,butare
notrelevantforthepotential.ThematchingconditionGNRQCD=GpNRQCDatthe
matchingscaleµ(thetwotheoriesandtheirGreenfunctionsareofcourseingeneral
notequal;theyaresoonlyintheregionwherepNRQCDexists)thenimplies

(
V(0)

s(r)=u0(r)
logZ(0)

s(r)=u1(r)
(2.11)

Soweseethatthepotentialatthisorderofthemultipoleexpansionissimplylinkedto
thevacuumexpectationvalueoftheWilsonloopbytherelation

V(0)

s(r)=u0(r)=�lim
TW!1

1
iTW

loghW⇤i.(2.12)
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• Classical (soft gluon) corrections to the scattering/broadening kernel  
can be problematic for perturbation theory, Linde problem

• Breakthrough: soft classical modes at space-like separations become  
Euclidean and time-independent Caron-Huot PRD79 (2008)

• Horrible HTL perturbative calculation or extremely challenging 4D lattice on the 
light-cone become 3D Electrostatic QCD (EQCD).  
New strategy: lattice for b≳1/gT, pQCD for b≲1/gT

• Recently: continuum-extrapolated EQCD lattice data  
for the scattering kernel and merging with pQCD  
Moore Schlusser PRD101 (2020) Moore Schlichting Schlusser  
Soudi JHEP2110 (2021)

Classical gluons in the scattering kernel

g g

nB(p) ∼ T/p ∼ 1/g
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• LO and NLO perturbative EQCD:  
Aurenche Gelis Zaraket (2002) Caron-Huot 
(2008) 
LO UV ( ) pQCD and matching:  
Arnold Xiao (2008) JG Kim (2018)

• Significant deviations from pQCD

• Non-perturbative magnetic “screening” 
means  instead of Molière  

q⊥ > gT

q−3
⊥ q−4

⊥

Non-perturbative classical contribution
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FIG. 1. (top) Non-perturbative elastic broadening kernel
CQCD(b?) in impact parameter space. Data points for two
di↵erent temperatures T = 250, 500MeV are shown along-
side the interpolating splines. We also compare to the short-
distance limit in Eq. (7) and the long-distance limit in Eq. (6).
(from [1]). (bottom) Elastic broadening kernel CQCD(q?)
in momentum space for T = 250, 500MeV. Blue and pur-
ple bands represent uncertainties of the spline interpolation
for 250MeV and 500MeV respectively. We also compare the
kernel to leading-order (LO) and next-to-leading order (NLO)
determinations, as well as to the UV limit in Eq. (17) and the
IR limit in Eq. (16).

While the integral in Eq. (10) is still highly oscillatory, it
can be computed numerically as long as the integrand is
su�ciently well behaved at the integration boundaries.
In order to ensure numerical convergence, we therefore
subtract the leading asymptotic behavior at large dis-
tances

dCIR(b?)

db?
=

�EQCD

g4T 2
g4T . (11)

and only perform a numerical Hankel transform of the
remainder

d

db?
�CQCD(b?) =

dCQCD(b?)

db?
�

dCIR

QCD
(b?)

db?
, (12)

which by construction vanishes for large impact parame-
ters. By numerically performing the Hankel transform

�CQCD(q?) =
2⇡

q?

Z 1

0

db? b?J1(b? q?)
d

db?
�CQCD(b?) ,

(13)

and supplying it with the analytic result for the Hankel
transform of CIR(b?), given by

CIR

QCD
(q?) =

2⇡

q3?

�EQCD

g2T
. (14)

we obtain the full momentum broadening kernel as

CQCD(q?) = �CQCD(q?) + CIR

QCD
(q?) , (15)

We note that, due to the fact that the Bessel function
is highly oscillatory for large momentaq?, su�cient care
should be taken in performing the integral, and we de-
scribe the procedure we employ in Appendix. A.
Next, in order to construct the momentum broaden-

ing kernel C(q?) at all scales we proceed to transform
the limiting behaviors of the kernel, which can be used
to extrapolate the results beyond the tabulated range of
q? values. In the deep infrared regime, the momentum
broadening kernel is determined by the string tension,
where as shown in Appendix. A, one finds

CQCD(q?)
q?⌧ g2T
������!2⇡

�EQCD

q3?
(16)

In the UV limit the momentum broadening kernel follows
the same behavior as the perturbative QCD kernel in
Eq. (4), and one obtains [40]

CQCD(q?)
q?� mD
������!

CRg4T 3
N

q4?
. (17)

C. Perturbative kernel in EQCD

Before we present results for the non-perturbative de-
termination of C(q?), we briefly recall the results of per-
turbative calculations, following [1, 39], which we will
use as a reference for comparison. At leading order (LO)
O(g4), the QCD collisional broadening kernel can be ex-
pressed in momentum space [40] as

CLO

QCD
(q?) =

g4CR

q2?(q
2

? +m2

D
)

Z
d3p

(2⇡)3
p� pz

p

[2CAnB(p)(1 + nB(p
0)) + 4NfTfnF(p)(1� nF(p

0))] ,
(18)

Schlichting Soudi PRD105 (2022)
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• Only classical corrections here, what 
happens with quantum corrections for 

?

• Similar lattice EQCD+pQCD programme 
in progress for the in-medium jet mass 
Schlusser Moore PRD102 (2020) 
JG Moore Schicho Schlusser JHEP02 (2022) 
JG Schicho Schlusser Weitz 2312.11731

q⊥ > gT

Non-perturbative classical contribution
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FIG. 1. (top) Non-perturbative elastic broadening kernel
CQCD(b?) in impact parameter space. Data points for two
di↵erent temperatures T = 250, 500MeV are shown along-
side the interpolating splines. We also compare to the short-
distance limit in Eq. (7) and the long-distance limit in Eq. (6).
(from [1]). (bottom) Elastic broadening kernel CQCD(q?)
in momentum space for T = 250, 500MeV. Blue and pur-
ple bands represent uncertainties of the spline interpolation
for 250MeV and 500MeV respectively. We also compare the
kernel to leading-order (LO) and next-to-leading order (NLO)
determinations, as well as to the UV limit in Eq. (17) and the
IR limit in Eq. (16).

While the integral in Eq. (10) is still highly oscillatory, it
can be computed numerically as long as the integrand is
su�ciently well behaved at the integration boundaries.
In order to ensure numerical convergence, we therefore
subtract the leading asymptotic behavior at large dis-
tances

dCIR(b?)

db?
=

�EQCD

g4T 2
g4T . (11)

and only perform a numerical Hankel transform of the
remainder

d

db?
�CQCD(b?) =

dCQCD(b?)

db?
�

dCIR

QCD
(b?)

db?
, (12)

which by construction vanishes for large impact parame-
ters. By numerically performing the Hankel transform

�CQCD(q?) =
2⇡

q?

Z 1

0

db? b?J1(b? q?)
d

db?
�CQCD(b?) ,

(13)

and supplying it with the analytic result for the Hankel
transform of CIR(b?), given by

CIR

QCD
(q?) =

2⇡

q3?

�EQCD

g2T
. (14)

we obtain the full momentum broadening kernel as

CQCD(q?) = �CQCD(q?) + CIR

QCD
(q?) , (15)

We note that, due to the fact that the Bessel function
is highly oscillatory for large momentaq?, su�cient care
should be taken in performing the integral, and we de-
scribe the procedure we employ in Appendix. A.
Next, in order to construct the momentum broaden-

ing kernel C(q?) at all scales we proceed to transform
the limiting behaviors of the kernel, which can be used
to extrapolate the results beyond the tabulated range of
q? values. In the deep infrared regime, the momentum
broadening kernel is determined by the string tension,
where as shown in Appendix. A, one finds

CQCD(q?)
q?⌧ g2T
������!2⇡

�EQCD

q3?
(16)

In the UV limit the momentum broadening kernel follows
the same behavior as the perturbative QCD kernel in
Eq. (4), and one obtains [40]

CQCD(q?)
q?� mD
������!

CRg4T 3
N

q4?
. (17)

C. Perturbative kernel in EQCD

Before we present results for the non-perturbative de-
termination of C(q?), we briefly recall the results of per-
turbative calculations, following [1, 39], which we will
use as a reference for comparison. At leading order (LO)
O(g4), the QCD collisional broadening kernel can be ex-
pressed in momentum space [40] as

CLO

QCD
(q?) =

g4CR

q2?(q
2

? +m2

D
)

Z
d3p

(2⇡)3
p� pz

p

[2CAnB(p)(1 + nB(p
0)) + 4NfTfnF(p)(1� nF(p

0))] ,
(18)
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FIG. 1. (top) Non-perturbative elastic broadening kernel
CQCD(b?) in impact parameter space. Data points for two
di↵erent temperatures T = 250, 500MeV are shown along-
side the interpolating splines. We also compare to the short-
distance limit in Eq. (7) and the long-distance limit in Eq. (6).
(from [1]). (bottom) Elastic broadening kernel CQCD(q?)
in momentum space for T = 250, 500MeV. Blue and pur-
ple bands represent uncertainties of the spline interpolation
for 250MeV and 500MeV respectively. We also compare the
kernel to leading-order (LO) and next-to-leading order (NLO)
determinations, as well as to the UV limit in Eq. (17) and the
IR limit in Eq. (16).

While the integral in Eq. (10) is still highly oscillatory, it
can be computed numerically as long as the integrand is
su�ciently well behaved at the integration boundaries.
In order to ensure numerical convergence, we therefore
subtract the leading asymptotic behavior at large dis-
tances

dCIR(b?)

db?
=

�EQCD

g4T 2
g4T . (11)

and only perform a numerical Hankel transform of the
remainder

d

db?
�CQCD(b?) =

dCQCD(b?)

db?
�

dCIR

QCD
(b?)

db?
, (12)

which by construction vanishes for large impact parame-
ters. By numerically performing the Hankel transform

�CQCD(q?) =
2⇡

q?

Z 1

0

db? b?J1(b? q?)
d

db?
�CQCD(b?) ,

(13)

and supplying it with the analytic result for the Hankel
transform of CIR(b?), given by

CIR

QCD
(q?) =

2⇡

q3?

�EQCD

g2T
. (14)

we obtain the full momentum broadening kernel as

CQCD(q?) = �CQCD(q?) + CIR

QCD
(q?) , (15)

We note that, due to the fact that the Bessel function
is highly oscillatory for large momentaq?, su�cient care
should be taken in performing the integral, and we de-
scribe the procedure we employ in Appendix. A.
Next, in order to construct the momentum broaden-

ing kernel C(q?) at all scales we proceed to transform
the limiting behaviors of the kernel, which can be used
to extrapolate the results beyond the tabulated range of
q? values. In the deep infrared regime, the momentum
broadening kernel is determined by the string tension,
where as shown in Appendix. A, one finds

CQCD(q?)
q?⌧ g2T
������!2⇡

�EQCD

q3?
(16)

In the UV limit the momentum broadening kernel follows
the same behavior as the perturbative QCD kernel in
Eq. (4), and one obtains [40]

CQCD(q?)
q?� mD
������!

CRg4T 3
N

q4?
. (17)

C. Perturbative kernel in EQCD

Before we present results for the non-perturbative de-
termination of C(q?), we briefly recall the results of per-
turbative calculations, following [1, 39], which we will
use as a reference for comparison. At leading order (LO)
O(g4), the QCD collisional broadening kernel can be ex-
pressed in momentum space [40] as
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FIG. 1. (top) Non-perturbative elastic broadening kernel
CQCD(b?) in impact parameter space. Data points for two
di↵erent temperatures T = 250, 500MeV are shown along-
side the interpolating splines. We also compare to the short-
distance limit in Eq. (7) and the long-distance limit in Eq. (6).
(from [1]). (bottom) Elastic broadening kernel CQCD(q?)
in momentum space for T = 250, 500MeV. Blue and pur-
ple bands represent uncertainties of the spline interpolation
for 250MeV and 500MeV respectively. We also compare the
kernel to leading-order (LO) and next-to-leading order (NLO)
determinations, as well as to the UV limit in Eq. (17) and the
IR limit in Eq. (16).

While the integral in Eq. (10) is still highly oscillatory, it
can be computed numerically as long as the integrand is
su�ciently well behaved at the integration boundaries.
In order to ensure numerical convergence, we therefore
subtract the leading asymptotic behavior at large dis-
tances

dCIR(b?)

db?
=

�EQCD

g4T 2
g4T . (11)

and only perform a numerical Hankel transform of the
remainder

d

db?
�CQCD(b?) =

dCQCD(b?)

db?
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dCIR

QCD
(b?)

db?
, (12)

which by construction vanishes for large impact parame-
ters. By numerically performing the Hankel transform

�CQCD(q?) =
2⇡

q?

Z 1

0

db? b?J1(b? q?)
d

db?
�CQCD(b?) ,

(13)

and supplying it with the analytic result for the Hankel
transform of CIR(b?), given by

CIR

QCD
(q?) =

2⇡

q3?

�EQCD

g2T
. (14)

we obtain the full momentum broadening kernel as

CQCD(q?) = �CQCD(q?) + CIR

QCD
(q?) , (15)

We note that, due to the fact that the Bessel function
is highly oscillatory for large momentaq?, su�cient care
should be taken in performing the integral, and we de-
scribe the procedure we employ in Appendix. A.
Next, in order to construct the momentum broaden-

ing kernel C(q?) at all scales we proceed to transform
the limiting behaviors of the kernel, which can be used
to extrapolate the results beyond the tabulated range of
q? values. In the deep infrared regime, the momentum
broadening kernel is determined by the string tension,
where as shown in Appendix. A, one finds

CQCD(q?)
q?⌧ g2T
������!2⇡

�EQCD

q3?
(16)

In the UV limit the momentum broadening kernel follows
the same behavior as the perturbative QCD kernel in
Eq. (4), and one obtains [40]

CQCD(q?)
q?� mD
������!

CRg4T 3
N

q4?
. (17)

C. Perturbative kernel in EQCD

Before we present results for the non-perturbative de-
termination of C(q?), we briefly recall the results of per-
turbative calculations, following [1, 39], which we will
use as a reference for comparison. At leading order (LO)
O(g4), the QCD collisional broadening kernel can be ex-
pressed in momentum space [40] as

CLO
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g4CR

q2?(q
2
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• Radiative corrections to momentum broadening are enhanced by soft and collinear 
logarithms in the single scattering regime ⇒ double logarithm 
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Figure 3. The soft limit of a t− or u−channel gluon exchange diagram. P is the hard momentum
and Q is the soft gluon momentum.

P

Q

Figure 4. The soft limit of a t− or u−channel quark exchange diagram. P is the hard momentum
and Q is the soft quark momentum.

Now consider a collinear 1 ↔ 2 process in the limit where one of the hard/thermal

legs becomes soft4, as shown in Fig. 5. In the first graph, the soft gluon emission

P
K

P
K

Figure 5. The soft-K limits of a 1 ↔ 2 process. The diagram on the left amounts to a diffusion
process at NLO, whereas the diagram on the right amounts to a conversion process.

contributes to the (longitudinal) diffusion of the hard particle. Similarly the soft quark

emission contributes to the hard quark conversion rate. At NLO we will then need

to subtract these limits from the collinear 1 ↔ 2 region and treat them as part of the

diffusion or conversion processes respectively.

4LPM interference is suppressed in this case [27].
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with µ
2 = q̂0⌧0 and ↵̄s = ↵sNc/⇡, where the microscopic scale ⌧0 is related to the in-medium

mean-free-path which for a thermal plasma scales as (g2T )�1 at weak coupling.

This double integration corresponds to the area of the right trapezoid depicted in

Figure 3 (left panel). When the upper limit of the k0
? integration falls below Q

2
s, that is,

k2

? < Qs(L)2, one is left with the area of a triangle and one obtains the following double

log (cf. Figure 3 (right panel))

q̂
(1)(k2

? < Q
2

s) =
↵̄s

2
q̂
(0) ln2

k2

?
µ2

. (2.15)

To obtain the corrections to the typical value of transverse momentum broadening we must

evaluate q̂ at k2

? = Q
2
s(L) ' q̂

(0)
L which yields the Liou-Mueller-Wu result [16]

hk
2

?i1�loop,DL '

⇣
q̂
(0) + q̂

(1)

⌘
L = q̂0L

✓
1 +

↵̄s

2
ln2

L

⌧0

◆
. (2.16)

Resummation. In the double logarithmic accuracy (DLA) these radiative corrections

can be resummed to all orders via an evolution equation ordered in ⌧ [16–18]:

q̂(⌧,k2

?) = q̂
(0)(⌧0,k

2

?) +

ˆ ⌧

⌧0

d⌧ 0

⌧ 0

ˆ k2
?

Q2
s(⌧

0)

dk02
?

k02
?

↵̄s(k
02
?) q̂(⌧ 0,k02

?) , (2.17)

Q
2

s(⌧) = q̂(⌧, Q2

s(⌧))⌧ , (2.18)

where q̂
(0)(⌧0,k?) corresponds to the tree-level initial condition. The strong coupling con-

stant appears inside the integral over k0
? to account for its running with the transverse

scale. It is convenient to re-express these two equations in terms of the logarithmic variables

Y = ln
⌧

⌧0
and ⇢ = ln

k2

?
q̂0⌧0

. (2.19)

Thus,

q̂(Y, ⇢) = q̂
(0)(0, ⇢) +

ˆ Y

0

dY 0
ˆ ⇢

⇢s(Y 0)
d⇢0 ↵̄s(⇢

0)q̂(Y 0
, ⇢

0) , (2.20)

q̂(Y, ⇢s(Y )) = q̂0e
⇢s(Y )�Y

. (2.21)

This non-linear evolution equation resums the double logarithms ↵sY ⇢ to all orders. Also,

it is valid in the large Nc limit which is reflected in the overall Nc factor absorbed in the

constant ↵̄s. In principle, since the definition of Qs is “flavor” dependent, there should

be a coupling between the evolution of the quenching parameter q̂F in the fundamental

representation and the adjoint one q̂A. In this paper, we do not consider the e↵ect of

such a coupling (which is beyond DLA) and focus on the evolution of q̂A only. At this

accuracy, the fundamental q̂ can be obtained from q̂A using q̂F = CF /CAq̂A. A graphical

representation of this evolution equation is displayed in Figure 2.

For the running coupling evolution, we use the one loop beta function to determine

the ⇢ dependence of ↵̄s:

↵̄s(⇢) =
b0

⇢ + ⇢0
, (2.22)

– 9 –

L

⌧0 ⌧ ⌧ ⌧ L

⌧0

...

0?

x?

⌧0

...

Figure 2: An illustration of multiple radiative corrections considered in this paper. Each

block represents a tower of gluon fluctuations triggered by a single scattering with a medium

constituent, with strongly decreasing lifetime and transverse momentum along the cascade

(so the transverse size of a gluon increases from the parent to its daughter). The exponen-

tiation resums several such blocks over the path length L of the incoming hard e↵ective

dipole with transverse size x? ⇠ 1/k?.

with

1

b0
=

11

12
�

NfTR

3Nc
, (2.23)

where Nf = 5 is the number of quark flavors.

Dense and dilute regime. In determining the transverse momentum distribution we

have to distinguish between the dense regime ⇢ < ⇢s(Y ) and the dilute one ⇢ > ⇢s(Y ).

In the latter, recall that the quenching parameter is function of two independent variables

Y = ln(L/⌧0) and ⇢. In the dense regime, however, there is a subtlety in the choice of

variables. Given a general solution q̂(Y, ⇢), the variable Y is no longer an independent

function of ⇢. Again, this variable is related to the upper limit of the ⌧ integral in the DL

phase-space as illustrated in Figure 3. Therefore, the logarithmic variable Y must be fixed

such that the quenching parameter q̂ which appears inside the forward scattering amplitude

is only a function of ⇢. The relevant time scale ⌧s(k
2

?), or in logarithmic variables Ys(⇢),

at which the quenching parameter q̂ must be evaluated is the largest time allowed by the

saturation condition:

Ys(⇢) = Y , ⇢ = ⇢s(Y ) . (2.24)

The function Ys(⇢) is then the inverse function of ⇢s(Y ). Again, in the dilute regime, the

value of Y is fixed by the typical path length L of the hard parton inside the dense medium

[21],

Y = ln(L/⌧0) . (2.25)

– 10 –



• Classical: large  corrections, 
non-perturbative all-order 
determinations. Affect also NLO 
transport coefficients

̂q0(1 + 𝒪(g))

Classical and quantum corrections

24

• Quantum: large  
corrections, resummations and 
renormalisations. Affect also double 
splitting

̂q0(1 + 𝒪(g2 ln2(LT)))



• Where do they meet in a weakly-coupled plasma? Is there a hierarchy or an 
interplay?

• Classical: large  corrections, 
non-perturbative all-order 
determinations. Affect also NLO 
transport coefficients

̂q0(1 + 𝒪(g))

Classical and quantum corrections

24

• Quantum: large  
corrections, resummations and 
renormalisations. Affect also double 
splitting

̂q0(1 + 𝒪(g2 ln2(LT)))



• Radiative correction to the scattering kernel for a medium of scattering centers 
 
 
soft DGLAP ( ) x LO (elastic) scattering kernel x dipole factork+ ≪ p+

The double logarithm in a nutshell

25

P

P �K

K + L

P + L P

P �KP �K � L

K + L

P

P �K

K
K + L

Figure 1. Diagrams contributing to radiative momentum broadening in the single-scattering regime.
The double solid line represents the hard jet parton (quark or gluon), curly lines are gluons and the
cross is a quark or gluon scattering center in the medium.

jet partons in the final state, in what is no longer a di↵usive process — see e.g. [51, 52]. This

µ factorisation also allows the incorporation in the e↵ective kinetic description of [53, 54],

where q̂(µ) is (one of) the transport coe�cients describing di↵usive momentum exchanges at

scales below µ. There it is complemented by the full kinetic description above that cuto↵.

We now consider the radiative correction to the transverse scattering rate in the single-

scattering regime, which emerges naturally in the standard dipole picture [29]. It comes from

the diagrams in Fig. 1 and it reads

�C(k?)
N=1
rad = 4↵sCR

Z
dk+

k+

Z
d2l?
(2⇡)2

C0(l?)
l2?

k2?(l? + k?)2
, (2.2)

where CR is the Casimir factor of the hard jet parton, CR = CF = (N2
c � 1)/2Nc for a quark,

CR = CA = Nc for a gluon. As shown in Fig 1, P is the four-momentum of the hard jet

parton, with p0 = pz = E � T . L denotes the four-momentum acquired from the medium,

and K is chosen in such a way that the hard jet parton acquires a final transverse momentum

of modulus k?. k+ ⌘ (k0 + kz)/2 ⇡ k0 is the light-cone frequency — see App. A for our

conventions. l2?/(k
2
?(l? +k?)2) is then the standard dipole factor and 2CR/k+ the soft limit

of the g  R DGLAP splitting function. Finally, C0(l?) ⇠ g4CAT 3/l4? is the leading order

scattering rate from a gluon source. In App. B we list the known LO results for mD . l? ⌧ T

and for l? & T , as well as a smooth interpolating scheme [13, 14]. For the present discussion

the precise form is irrelevant, as we shall soon see.

Eq. (2.2) is in principle just the first, N = 1 term in the opacity series of multiple

scattering. As observed in [29], the requirement that the transverse momentum carried away

by the gluon is larger than that picked up in a typical collision with the medium, |k?+ l?|�

l?, puts us in the single-scattering regime, where the N = 1 term dominates. This yields

�C(k?)
single
rad = 4↵sCR q̂0

Z
dk+

k+
1

k4?
, with q̂0 ⌘

Z ⇢ d2l?
(2⇡)2

l2? C0(l?) , (2.3)

where we have also taken the harmonic oscillator (HO) approximation: we neglect the ⇢ scale

dependence of the LO transverse momentum broadening coe�cient q̂0, which is treated as a
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jet partons in the final state, in what is no longer a di↵usive process — see e.g. [51, 52]. This

µ factorisation also allows the incorporation in the e↵ective kinetic description of [53, 54],

where q̂(µ) is (one of) the transport coe�cients describing di↵usive momentum exchanges at

scales below µ. There it is complemented by the full kinetic description above that cuto↵.

We now consider the radiative correction to the transverse scattering rate in the single-

scattering regime, which emerges naturally in the standard dipole picture [29]. It comes from

the diagrams in Fig. 1 and it reads
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, (2.2)

where CR is the Casimir factor of the hard jet parton, CR = CF = (N2
c � 1)/2Nc for a quark,

CR = CA = Nc for a gluon. As shown in Fig 1, P is the four-momentum of the hard jet

parton, with p0 = pz = E � T . L denotes the four-momentum acquired from the medium,

and K is chosen in such a way that the hard jet parton acquires a final transverse momentum

of modulus k?. k+ ⌘ (k0 + kz)/2 ⇡ k0 is the light-cone frequency — see App. A for our

conventions. l2?/(k
2
?(l? +k?)2) is then the standard dipole factor and 2CR/k+ the soft limit

of the g  R DGLAP splitting function. Finally, C0(l?) ⇠ g4CAT 3/l4? is the leading order

scattering rate from a gluon source. In App. B we list the known LO results for mD . l? ⌧ T

and for l? & T , as well as a smooth interpolating scheme [13, 14]. For the present discussion

the precise form is irrelevant, as we shall soon see.

Eq. (2.2) is in principle just the first, N = 1 term in the opacity series of multiple

scattering. As observed in [29], the requirement that the transverse momentum carried away

by the gluon is larger than that picked up in a typical collision with the medium, |k?+ l?|�

l?, puts us in the single-scattering regime, where the N = 1 term dominates. This yields

�C(k?)
single
rad = 4↵sCR q̂0

Z
dk+

k+
1

k4?
, with q̂0 ⌘

Z ⇢ d2l?
(2⇡)2

l2? C0(l?) , (2.3)

where we have also taken the harmonic oscillator (HO) approximation: we neglect the ⇢ scale

dependence of the LO transverse momentum broadening coe�cient q̂0, which is treated as a
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jet partons in the final state, in what is no longer a di↵usive process — see e.g. [51, 52]. This

µ factorisation also allows the incorporation in the e↵ective kinetic description of [53, 54],

where q̂(µ) is (one of) the transport coe�cients describing di↵usive momentum exchanges at

scales below µ. There it is complemented by the full kinetic description above that cuto↵.

We now consider the radiative correction to the transverse scattering rate in the single-

scattering regime, which emerges naturally in the standard dipole picture [29]. It comes from

the diagrams in Fig. 1 and it reads

�C(k?)
N=1
rad = 4↵sCR

Z
dk+

k+

Z
d2l?
(2⇡)2

C0(l?)
l2?

k2?(l? + k?)2
, (2.2)

where CR is the Casimir factor of the hard jet parton, CR = CF = (N2
c � 1)/2Nc for a quark,

CR = CA = Nc for a gluon. As shown in Fig 1, P is the four-momentum of the hard jet

parton, with p0 = pz = E � T . L denotes the four-momentum acquired from the medium,

and K is chosen in such a way that the hard jet parton acquires a final transverse momentum

of modulus k?. k+ ⌘ (k0 + kz)/2 ⇡ k0 is the light-cone frequency — see App. A for our

conventions. l2?/(k
2
?(l? +k?)2) is then the standard dipole factor and 2CR/k+ the soft limit

of the g  R DGLAP splitting function. Finally, C0(l?) ⇠ g4CAT 3/l4? is the leading order

scattering rate from a gluon source. In App. B we list the known LO results for mD . l? ⌧ T

and for l? & T , as well as a smooth interpolating scheme [13, 14]. For the present discussion

the precise form is irrelevant, as we shall soon see.

Eq. (2.2) is in principle just the first, N = 1 term in the opacity series of multiple

scattering. As observed in [29], the requirement that the transverse momentum carried away

by the gluon is larger than that picked up in a typical collision with the medium, |k?+ l?|�

l?, puts us in the single-scattering regime, where the N = 1 term dominates. This yields

�C(k?)
single
rad = 4↵sCR q̂0

Z
dk+

k+
1

k4?
, with q̂0 ⌘

Z ⇢ d2l?
(2⇡)2

l2? C0(l?) , (2.3)

where we have also taken the harmonic oscillator (HO) approximation: we neglect the ⇢ scale

dependence of the LO transverse momentum broadening coe�cient q̂0, which is treated as a
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jet partons in the final state, in what is no longer a di↵usive process — see e.g. [51, 52]. This

µ factorisation also allows the incorporation in the e↵ective kinetic description of [53, 54],

where q̂(µ) is (one of) the transport coe�cients describing di↵usive momentum exchanges at

scales below µ. There it is complemented by the full kinetic description above that cuto↵.

We now consider the radiative correction to the transverse scattering rate in the single-

scattering regime, which emerges naturally in the standard dipole picture [29]. It comes from

the diagrams in Fig. 1 and it reads
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rad = 4↵sCR
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dk+

k+
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, (2.2)

where CR is the Casimir factor of the hard jet parton, CR = CF = (N2
c � 1)/2Nc for a quark,

CR = CA = Nc for a gluon. As shown in Fig 1, P is the four-momentum of the hard jet

parton, with p0 = pz = E � T . L denotes the four-momentum acquired from the medium,

and K is chosen in such a way that the hard jet parton acquires a final transverse momentum

of modulus k?. k+ ⌘ (k0 + kz)/2 ⇡ k0 is the light-cone frequency — see App. A for our

conventions. l2?/(k
2
?(l? +k?)2) is then the standard dipole factor and 2CR/k+ the soft limit

of the g  R DGLAP splitting function. Finally, C0(l?) ⇠ g4CAT 3/l4? is the leading order

scattering rate from a gluon source. In App. B we list the known LO results for mD . l? ⌧ T

and for l? & T , as well as a smooth interpolating scheme [13, 14]. For the present discussion

the precise form is irrelevant, as we shall soon see.

Eq. (2.2) is in principle just the first, N = 1 term in the opacity series of multiple

scattering. As observed in [29], the requirement that the transverse momentum carried away

by the gluon is larger than that picked up in a typical collision with the medium, |k?+ l?|�

l?, puts us in the single-scattering regime, where the N = 1 term dominates. This yields
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where we have also taken the harmonic oscillator (HO) approximation: we neglect the ⇢ scale

dependence of the LO transverse momentum broadening coe�cient q̂0, which is treated as a
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Figure 2. Schematic depiction of the bounds on the integral in Eq. (2.5). The (b) side of the triangle
is given by ⌧ =

p
k+/q̂0 whereas the (a) one is given by ⌧ = k+/µ2. The logarithmic axes allow one to

easily read the result of the integral Eq. (2.5) straight from the figure, up to the prefactor ↵sCRq̂0/⇡.
Our labeling for the three boundaries follows that of [29].

constant at the HO level. This furthermore makes the dependence on the detailed form of

C0(l?) irrelevant. We shall discuss a pathway to go beyond this approximation in Sec. 5.

The double logarithmic correction then follows in the form

�q̂(µ) = 4↵sCR q̂0

Z µ d2k?
(2⇡)2k2?

Z
dk+

k+
. (2.4)

Here we can quite explicitly see how the double log emerges — one coming from the soft

dk+/k+ divergence and the other from the collinear dk2?/k
2
? divergence.

We now the specify integration limits keeping us in the single scattering regime. Moreover,

instead of integrating over k?, it will be more convenient to integrate over the formation time

of the radiated gluon, ⌧ ⌘ k+/k2?. The limits, which we show in Fig. 2, are then [29]

• ⌧ <
p

k+/q̂0, represented by line (b) in Fig. 2. In the deep Landau–Pomeranchuk–

Migdal (LPM) regime multiple scattering regime, k2? ⇠ q̂0⌧ . The former constraint

then emerges upon demanding that ⌧ < k2?/q̂0 and solving for ⌧ . E↵ectively, this

prevents the formation time from getting su�ciently large to lead us into the multiple

scattering regime, which will cut o↵ the double-logarithmic phase space: the collinear

dk2?/k
2
? log can exist as long as the initial and final states can propagate along straight

lines for su�ciently long times before and after the single scattering [55].

• ⌧ > k+/µ2, represented by line (a). This condition on the formation time corresponds

to enforcing the UV cuto↵ on transverse momentum, i.e. k? < µ. In the original

derivation of [29] this µ cuto↵ is identified with Q2
s ⌘ q̂Lmed. If instead µ > Qs the

boundaries of the double-logarithmic region change, as shown in [36].
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Figure 1. Diagrams contributing to radiative momentum broadening in the single-scattering regime.
The double solid line represents the hard jet parton (quark or gluon), curly lines are gluons and the
cross is a quark or gluon scattering center in the medium.

jet partons in the final state, in what is no longer a di↵usive process — see e.g. [51, 52]. This

µ factorisation also allows the incorporation in the e↵ective kinetic description of [53, 54],

where q̂(µ) is (one of) the transport coe�cients describing di↵usive momentum exchanges at

scales below µ. There it is complemented by the full kinetic description above that cuto↵.

We now consider the radiative correction to the transverse scattering rate in the single-

scattering regime, which emerges naturally in the standard dipole picture [29]. It comes from

the diagrams in Fig. 1 and it reads

�C(k?)
N=1
rad = 4↵sCR

Z
dk+

k+

Z
d2l?
(2⇡)2

C0(l?)
l2?

k2?(l? + k?)2
, (2.2)

where CR is the Casimir factor of the hard jet parton, CR = CF = (N2
c � 1)/2Nc for a quark,

CR = CA = Nc for a gluon. As shown in Fig 1, P is the four-momentum of the hard jet

parton, with p0 = pz = E � T . L denotes the four-momentum acquired from the medium,

and K is chosen in such a way that the hard jet parton acquires a final transverse momentum

of modulus k?. k+ ⌘ (k0 + kz)/2 ⇡ k0 is the light-cone frequency — see App. A for our

conventions. l2?/(k
2
?(l? +k?)2) is then the standard dipole factor and 2CR/k+ the soft limit

of the g  R DGLAP splitting function. Finally, C0(l?) ⇠ g4CAT 3/l4? is the leading order

scattering rate from a gluon source. In App. B we list the known LO results for mD . l? ⌧ T

and for l? & T , as well as a smooth interpolating scheme [13, 14]. For the present discussion

the precise form is irrelevant, as we shall soon see.

Eq. (2.2) is in principle just the first, N = 1 term in the opacity series of multiple

scattering. As observed in [29], the requirement that the transverse momentum carried away

by the gluon is larger than that picked up in a typical collision with the medium, |k?+ l?|�

l?, puts us in the single-scattering regime, where the N = 1 term dominates. This yields

�C(k?)
single
rad = 4↵sCR q̂0

Z
dk+

k+
1

k4?
, with q̂0 ⌘

Z ⇢ d2l?
(2⇡)2

l2? C0(l?) , (2.3)

where we have also taken the harmonic oscillator (HO) approximation: we neglect the ⇢ scale

dependence of the LO transverse momentum broadening coe�cient q̂0, which is treated as a
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Figure 2. Schematic depiction of the bounds on the integral in Eq. (2.5). The (b) side of the triangle
is given by ⌧ =

p
k+/q̂0 whereas the (a) one is given by ⌧ = k+/µ2. The logarithmic axes allow one to

easily read the result of the integral Eq. (2.5) straight from the figure, up to the prefactor ↵sCRq̂0/⇡.
Our labeling for the three boundaries follows that of [29].

constant at the HO level. This furthermore makes the dependence on the detailed form of

C0(l?) irrelevant. We shall discuss a pathway to go beyond this approximation in Sec. 5.

The double logarithmic correction then follows in the form

�q̂(µ) = 4↵sCR q̂0

Z µ d2k?
(2⇡)2k2?

Z
dk+

k+
. (2.4)

Here we can quite explicitly see how the double log emerges — one coming from the soft

dk+/k+ divergence and the other from the collinear dk2?/k
2
? divergence.

We now the specify integration limits keeping us in the single scattering regime. Moreover,

instead of integrating over k?, it will be more convenient to integrate over the formation time

of the radiated gluon, ⌧ ⌘ k+/k2?. The limits, which we show in Fig. 2, are then [29]

• ⌧ <
p

k+/q̂0, represented by line (b) in Fig. 2. In the deep Landau–Pomeranchuk–

Migdal (LPM) regime multiple scattering regime, k2? ⇠ q̂0⌧ . The former constraint

then emerges upon demanding that ⌧ < k2?/q̂0 and solving for ⌧ . E↵ectively, this

prevents the formation time from getting su�ciently large to lead us into the multiple

scattering regime, which will cut o↵ the double-logarithmic phase space: the collinear

dk2?/k
2
? log can exist as long as the initial and final states can propagate along straight

lines for su�ciently long times before and after the single scattering [55].

• ⌧ > k+/µ2, represented by line (a). This condition on the formation time corresponds

to enforcing the UV cuto↵ on transverse momentum, i.e. k? < µ. In the original

derivation of [29] this µ cuto↵ is identified with Q2
s ⌘ q̂Lmed. If instead µ > Qs the

boundaries of the double-logarithmic region change, as shown in [36].
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Figure 1. Diagrams contributing to radiative momentum broadening in the single-scattering regime.
The double solid line represents the hard jet parton (quark or gluon), curly lines are gluons and the
cross is a quark or gluon scattering center in the medium.

jet partons in the final state, in what is no longer a di↵usive process — see e.g. [51, 52]. This

µ factorisation also allows the incorporation in the e↵ective kinetic description of [53, 54],

where q̂(µ) is (one of) the transport coe�cients describing di↵usive momentum exchanges at

scales below µ. There it is complemented by the full kinetic description above that cuto↵.

We now consider the radiative correction to the transverse scattering rate in the single-

scattering regime, which emerges naturally in the standard dipole picture [29]. It comes from

the diagrams in Fig. 1 and it reads

�C(k?)
N=1
rad = 4↵sCR

Z
dk+

k+

Z
d2l?
(2⇡)2

C0(l?)
l2?

k2?(l? + k?)2
, (2.2)

where CR is the Casimir factor of the hard jet parton, CR = CF = (N2
c � 1)/2Nc for a quark,

CR = CA = Nc for a gluon. As shown in Fig 1, P is the four-momentum of the hard jet

parton, with p0 = pz = E � T . L denotes the four-momentum acquired from the medium,

and K is chosen in such a way that the hard jet parton acquires a final transverse momentum

of modulus k?. k+ ⌘ (k0 + kz)/2 ⇡ k0 is the light-cone frequency — see App. A for our

conventions. l2?/(k
2
?(l? +k?)2) is then the standard dipole factor and 2CR/k+ the soft limit

of the g  R DGLAP splitting function. Finally, C0(l?) ⇠ g4CAT 3/l4? is the leading order

scattering rate from a gluon source. In App. B we list the known LO results for mD . l? ⌧ T

and for l? & T , as well as a smooth interpolating scheme [13, 14]. For the present discussion

the precise form is irrelevant, as we shall soon see.

Eq. (2.2) is in principle just the first, N = 1 term in the opacity series of multiple

scattering. As observed in [29], the requirement that the transverse momentum carried away

by the gluon is larger than that picked up in a typical collision with the medium, |k?+ l?|�

l?, puts us in the single-scattering regime, where the N = 1 term dominates. This yields

�C(k?)
single
rad = 4↵sCR q̂0

Z
dk+

k+
1

k4?
, with q̂0 ⌘

Z ⇢ d2l?
(2⇡)2

l2? C0(l?) , (2.3)

where we have also taken the harmonic oscillator (HO) approximation: we neglect the ⇢ scale

dependence of the LO transverse momentum broadening coe�cient q̂0, which is treated as a
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Figure 2. Schematic depiction of the bounds on the integral in Eq. (2.5). The (b) side of the triangle
is given by ⌧ =

p
k+/q̂0 whereas the (a) one is given by ⌧ = k+/µ2. The logarithmic axes allow one to

easily read the result of the integral Eq. (2.5) straight from the figure, up to the prefactor ↵sCRq̂0/⇡.
Our labeling for the three boundaries follows that of [29].

constant at the HO level. This furthermore makes the dependence on the detailed form of

C0(l?) irrelevant. We shall discuss a pathway to go beyond this approximation in Sec. 5.

The double logarithmic correction then follows in the form

�q̂(µ) = 4↵sCR q̂0

Z µ d2k?
(2⇡)2k2?

Z
dk+

k+
. (2.4)

Here we can quite explicitly see how the double log emerges — one coming from the soft

dk+/k+ divergence and the other from the collinear dk2?/k
2
? divergence.

We now the specify integration limits keeping us in the single scattering regime. Moreover,

instead of integrating over k?, it will be more convenient to integrate over the formation time

of the radiated gluon, ⌧ ⌘ k+/k2?. The limits, which we show in Fig. 2, are then [29]

• ⌧ <
p

k+/q̂0, represented by line (b) in Fig. 2. In the deep Landau–Pomeranchuk–

Migdal (LPM) regime multiple scattering regime, k2? ⇠ q̂0⌧ . The former constraint

then emerges upon demanding that ⌧ < k2?/q̂0 and solving for ⌧ . E↵ectively, this

prevents the formation time from getting su�ciently large to lead us into the multiple

scattering regime, which will cut o↵ the double-logarithmic phase space: the collinear

dk2?/k
2
? log can exist as long as the initial and final states can propagate along straight

lines for su�ciently long times before and after the single scattering [55].

• ⌧ > k+/µ2, represented by line (a). This condition on the formation time corresponds

to enforcing the UV cuto↵ on transverse momentum, i.e. k? < µ. In the original

derivation of [29] this µ cuto↵ is identified with Q2
s ⌘ q̂Lmed. If instead µ > Qs the

boundaries of the double-logarithmic region change, as shown in [36].
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• In a weakly-coupled QGP at first order in the opacity one has 
 
 
obtained by explicit calculation in Eamonn’s thesis, can be derived from the AMY 
formalism Arnold Moore Yaffe (2002)
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• In a weakly-coupled QGP at first order in the opacity one has 
 
 
obtained by explicit calculation in Eamonn’s thesis, can be derived from AMY

• Bose-Einstein distribution : not just scattering centers in the medium

• Stimulated emission 
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Figure 1. Diagrams contributing to radiative momentum broadening in the single-scattering regime.
The double solid line represents the hard jet parton (quark or gluon), curly lines are gluons and the
cross is a quark or gluon scattering center in the medium.

jet partons in the final state, in what is no longer a di↵usive process — see e.g. [51, 52]. This

µ factorisation also allows the incorporation in the e↵ective kinetic description of [53, 54],

where q̂(µ) is (one of) the transport coe�cients describing di↵usive momentum exchanges at

scales below µ. There it is complemented by the full kinetic description above that cuto↵.

We now consider the radiative correction to the transverse scattering rate in the single-

scattering regime, which emerges naturally in the standard dipole picture [29]. It comes from

the diagrams in Fig. 1 and it reads

�C(k?)
N=1
rad = 4↵sCR

Z
dk+

k+

Z
d2l?
(2⇡)2

C0(l?)
l2?

k2?(l? + k?)2
, (2.2)

where CR is the Casimir factor of the hard jet parton, CR = CF = (N2
c � 1)/2Nc for a quark,

CR = CA = Nc for a gluon. As shown in Fig 1, P is the four-momentum of the hard jet

parton, with p0 = pz = E � T . L denotes the four-momentum acquired from the medium,

and K is chosen in such a way that the hard jet parton acquires a final transverse momentum

of modulus k?. k+ ⌘ (k0 + kz)/2 ⇡ k0 is the light-cone frequency — see App. A for our

conventions. l2?/(k
2
?(l? +k?)2) is then the standard dipole factor and 2CR/k+ the soft limit

of the g  R DGLAP splitting function. Finally, C0(l?) ⇠ g4CAT 3/l4? is the leading order

scattering rate from a gluon source. In App. B we list the known LO results for mD . l? ⌧ T

and for l? & T , as well as a smooth interpolating scheme [13, 14]. For the present discussion

the precise form is irrelevant, as we shall soon see.

Eq. (2.2) is in principle just the first, N = 1 term in the opacity series of multiple

scattering. As observed in [29], the requirement that the transverse momentum carried away

by the gluon is larger than that picked up in a typical collision with the medium, |k?+ l?|�

l?, puts us in the single-scattering regime, where the N = 1 term dominates. This yields

�C(k?)
single
rad = 4↵sCR q̂0

Z
dk+

k+
1

k4?
, with q̂0 ⌘

Z ⇢ d2l?
(2⇡)2

l2? C0(l?) , (2.3)

where we have also taken the harmonic oscillator (HO) approximation: we neglect the ⇢ scale

dependence of the LO transverse momentum broadening coe�cient q̂0, which is treated as a
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jetpartonsinthefinalstate,inwhatisnolongeradi↵usiveprocess—seee.g.[51,52].This

µfactorisationalsoallowstheincorporationinthee↵ectivekineticdescriptionof[53,54],

whereq̂(µ)is(oneof)thetransportcoe�cientsdescribingdi↵usivemomentumexchangesat

scalesbelowµ.Thereitiscomplementedbythefullkineticdescriptionabovethatcuto↵.

Wenowconsidertheradiativecorrectiontothetransversescatteringrateinthesingle-

scatteringregime,whichemergesnaturallyinthestandarddipolepicture[29].Itcomesfrom

thediagramsinFig.1anditreads
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N=1
rad=4↵sCR

Z
dk+

k+

Z
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(2⇡)2

C0(l?)
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k2?(l?+k?)2
,(2.2)

whereCRistheCasimirfactorofthehardjetparton,CR=CF=(N2
c�1)/2Ncforaquark,

CR=CA=Ncforagluon.AsshowninFig1,Pisthefour-momentumofthehardjet

parton,withp0=pz=E�T.Ldenotesthefour-momentumacquiredfromthemedium,

andKischoseninsuchawaythatthehardjetpartonacquiresafinaltransversemomentum

ofmodulusk?.k+⌘(k0+kz)/2⇡k0isthelight-conefrequency—seeApp.Aforour

conventions.l2?/(k
2
?(l?+k?)2)isthenthestandarddipolefactorand2CR/k+thesoftlimit

oftheg RDGLAPsplittingfunction.Finally,C0(l?)⇠g4CAT3/l4?istheleadingorder

scatteringratefromagluonsource.InApp.BwelisttheknownLOresultsformD.l?⌧T

andforl?&T,aswellasasmoothinterpolatingscheme[13,14].Forthepresentdiscussion

thepreciseformisirrelevant,asweshallsoonsee.

Eq.(2.2)isinprinciplejustthefirst,N=1termintheopacityseriesofmultiple

scattering.Asobservedin[29],therequirementthatthetransversemomentumcarriedaway

bythegluonislargerthanthatpickedupinatypicalcollisionwiththemedium,|k?+l?|�

l?,putsusinthesingle-scatteringregime,wheretheN=1termdominates.Thisyields

�C(k?)
single
rad=4↵sCRq̂0

Z
dk+

k+
1

k4?
,withq̂0⌘

Z⇢d2l?
(2⇡)2

l2?C0(l?),(2.3)

wherewehavealsotakentheharmonicoscillator(HO)approximation:weneglectthe⇢scale

dependenceoftheLOtransversemomentumbroadeningcoe�cientq̂0,whichistreatedasa
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• Consider for illustration 

• Blue:  and .   
irrelevant, few-scattering regime 
single << few << many (deep LPM)

• Ochre:  with  
 intermediate  

regulator to separate the few and single 
scattering regimes  

• Hence regions 1+2 give at double-log accuracy

gT < μ < T

τ > 1/g2T k+ > T nB(k+)

τint < τ < 1/g2T
1/gT < τint < 1/g2T

The few-scattering regime
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Figure 3. A pictorial representation of how the phase space of the radiated gluon is partitioned
once thermal e↵ects are taken into account. See the main text for the explanation of the di↵erent
subregions.

Graphically, it is represented in Fig. 3 by the triangle above ⌧ = ⌧int, which corresponds

to the 1 and 2 subregions. We have filled the 1 region in blue for ⌧ & 1/g2T , where the

e↵ect of the thermal distributions is irrelevant, and in ochre for ⌧int < ⌧ < 1/g2T , where they

start to contribute. For reasons that will become clear shortly, the smaller 2 triangle has not

been shaded. Indeed, as we shall show in App. C.1, the double-logarithmic terms from the

integration of Eq. (3.4) are

�q̂(µ)fewdlog =
↵sCR

2⇡
q̂0

⇢
ln2

µ2

q̂0⌧int
�

1

2
ln2

!T

q̂0⌧2int

�
with !T =

2⇡T

e�E
for

!T

µ2
⌧ ⌧int ⌧

r
!T

q̂0
.

(3.5)

Here �E is the Euler–Mascheroni constant and !T is the O(T ) scale which naturally appears

once thermal are e↵ects into account. While its precise value can only be determined from the

integration, its scaling could be expected and is related to the vacuum-thermal cancellation

we shall discuss soon. Graphically, if we take k+ = !T as a vertical line in Fig. 3, the first term

in Eq. (3.5) comes from integrating over the entire “1+2” triangle, whereas the second term

comes from subtracting the smaller 2 triangle, which therefore does not contribute to double-

logarithmic accuracy. Furthermore, this k+ = !T line intersects line (b) at
p
!T /q̂0 ⇠ 1/g2T ,

thus excluding the range where the formation time estimate becomes unreliable.

We also remark that, for ⌧int > ⌧min, the horizontal ⌧ = ⌧int line intersects the diagonal

sides of the triangle at k+ = q̂0⌧2int (line (b)) and k+ = µ2⌧int (line (a)). The form (3.5) arises

when the temperature scale !T falls in between these two values, so that q̂0⌧2int ⌧ !T ⌧ µ2⌧int,

resulting in the range of validity expressed there. This is where the size of µ with respect

to the medium scales enters. At leading order, i.e. without considering these radiative

– 9 –
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Figure 3. A pictorial representation of how the phase space of the radiated gluon is partitioned
once thermal e↵ects are taken into account. See the main text for the explanation of the di↵erent
subregions.
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Figure 3. A pictorial representation of how the phase space of the radiated gluon is partitioned
once thermal e↵ects are taken into account. See the main text for the explanation of the di↵erent
subregions.

Graphically, it is represented in Fig. 3 by the triangle above ⌧ = ⌧int, which corresponds

to the 1 and 2 subregions. We have filled the 1 region in blue for ⌧ & 1/g2T , where the

e↵ect of the thermal distributions is irrelevant, and in ochre for ⌧int < ⌧ < 1/g2T , where they

start to contribute. For reasons that will become clear shortly, the smaller 2 triangle has not

been shaded. Indeed, as we shall show in App. C.1, the double-logarithmic terms from the

integration of Eq. (3.4) are
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Here �E is the Euler–Mascheroni constant and !T is the O(T ) scale which naturally appears

once thermal are e↵ects into account. While its precise value can only be determined from the

integration, its scaling could be expected and is related to the vacuum-thermal cancellation

we shall discuss soon. Graphically, if we take k+ = !T as a vertical line in Fig. 3, the first term

in Eq. (3.5) comes from integrating over the entire “1+2” triangle, whereas the second term

comes from subtracting the smaller 2 triangle, which therefore does not contribute to double-

logarithmic accuracy. Furthermore, this k+ = !T line intersects line (b) at
p
!T /q̂0 ⇠ 1/g2T ,

thus excluding the range where the formation time estimate becomes unreliable.

We also remark that, for ⌧int > ⌧min, the horizontal ⌧ = ⌧int line intersects the diagonal

sides of the triangle at k+ = q̂0⌧2int (line (b)) and k+ = µ2⌧int (line (a)). The form (3.5) arises

when the temperature scale !T falls in between these two values, so that q̂0⌧2int ⌧ !T ⌧ µ2⌧int,

resulting in the range of validity expressed there. This is where the size of µ with respect

to the medium scales enters. At leading order, i.e. without considering these radiative
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Figure 3. A pictorial representation of how the phase space of the radiated gluon is partitioned
once thermal e↵ects are taken into account. See the main text for the explanation of the di↵erent
subregions.

Graphically, it is represented in Fig. 3 by the triangle above ⌧ = ⌧int, which corresponds

to the 1 and 2 subregions. We have filled the 1 region in blue for ⌧ & 1/g2T , where the

e↵ect of the thermal distributions is irrelevant, and in ochre for ⌧int < ⌧ < 1/g2T , where they

start to contribute. For reasons that will become clear shortly, the smaller 2 triangle has not

been shaded. Indeed, as we shall show in App. C.1, the double-logarithmic terms from the

integration of Eq. (3.4) are
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Here �E is the Euler–Mascheroni constant and !T is the O(T ) scale which naturally appears

once thermal are e↵ects into account. While its precise value can only be determined from the

integration, its scaling could be expected and is related to the vacuum-thermal cancellation

we shall discuss soon. Graphically, if we take k+ = !T as a vertical line in Fig. 3, the first term

in Eq. (3.5) comes from integrating over the entire “1+2” triangle, whereas the second term

comes from subtracting the smaller 2 triangle, which therefore does not contribute to double-

logarithmic accuracy. Furthermore, this k+ = !T line intersects line (b) at
p
!T /q̂0 ⇠ 1/g2T ,

thus excluding the range where the formation time estimate becomes unreliable.

We also remark that, for ⌧int > ⌧min, the horizontal ⌧ = ⌧int line intersects the diagonal

sides of the triangle at k+ = q̂0⌧2int (line (b)) and k+ = µ2⌧int (line (a)). The form (3.5) arises

when the temperature scale !T falls in between these two values, so that q̂0⌧2int ⌧ !T ⌧ µ2⌧int,

resulting in the range of validity expressed there. This is where the size of µ with respect

to the medium scales enters. At leading order, i.e. without considering these radiative
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P �K
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P + L

Figure 6. One of the extra diagrams that appear once the duration of the jet-medium interaction is
comparable to the gluon formation time. The blob represents a resummed Hard Thermal Loop: the
L gluon is thus a time-like plasmon. Diagrams corresponding to the other processes of Fig. 1, as well
as the plasmon emission/gluon absorption crossings are not shown.

Here we instead present a more intuitive derivation, drawing from the literature. Namely,

k? ⇠
p
gT � l? ⇠ gT , k+ ⇠ T is the semi-collinear region identified in [54, 59]. There it was

found that it is precisely this semi-collinear process that happens on a shorter formation time

⌧semi ⇠ 1/(gT ) than the strictly collinear one ⌧coll & 1/(g2T ) through a single scattering with

the medium. The one single scattering exchanges l? ⇠ gT ; its duration is thus of the same

order of ⌧semi, causing the breakdown of the instantaneous approximation. Thus, addressing

this corresponds to “crossing” boundary (c), in the language of [29].

The evaluation of [54, 59] addressed this non-instantaneous nature. In more detail, the

strict collinear regime corresponds, in the momentum labeling of Fig. 1, to l� ⇡ (k? +

l?)2/(2k+) ⇠ g2T ⌧ l+, l? ⇠ gT ,8 as arising from the on-shell conditions for the outgoing

K +L and P �K legs. Thus, when Fourier-transforming the L propagator to position space

one can neglect its l� dependence, leading to instantaneous propagation in the x+ direction.

Conversely, in the semi-collinear regime k? ⇠
p
gT, k+ ⇠ T , so that l� ⇡ k2?/(2k

+) ⇠ gT ⇠

l+, l? ⇠ gT . Hence the outgoing gluon has the scaling (K + L) ⇠ T (1, gT,
p
gT ), which is

what was identified in [54, 59] as semi-collinear. In our language it represents a specific coft

scaling, as per Footnote 7. In this scaling l� is no longer negligible with respect to l+ and l?,

so that the L gluon exchange is no longer instantaneous in x+. In momentum space, this no

longer restricts L to space-like values, thus opening the phase space for the absorption and

emission of soft, time-like plasmons, as shown in the example in Fig. 6.

We can then directly take the results of [54], which computed these semi-collinear pro-

cesses in the non-abelian case. By inspecting Fig. 10 of [54] one arrives at the dictionary

K[54] ! L, Q[54] ! K. The derivation of [54, 59] lead to an integrated-in-transverse momen-

tum rate; however, in intermediate steps a consistent labeling of momenta was maintained in

all diagrams, so that this integration can be undone naturally. We can then take Eq. (8.8)

of [54], undo the transverse integration, apply the dictionary and take the soft-gluon limit

x ! 0 in the q ! qg and g ! gg processes, together with a p ! 1 one for consistency. This

8We are taking the energy of the hard jet parton to be infinite, in accordance with our general setup.
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Figure 1. Diagrams contributing to radiative momentum broadening in the single-scattering regime.
The double solid line represents the hard jet parton (quark or gluon), curly lines are gluons and the
cross is a quark or gluon scattering center in the medium.

jet partons in the final state, in what is no longer a di↵usive process — see e.g. [51, 52]. This

µ factorisation also allows the incorporation in the e↵ective kinetic description of [53, 54],

where q̂(µ) is (one of) the transport coe�cients describing di↵usive momentum exchanges at

scales below µ. There it is complemented by the full kinetic description above that cuto↵.

We now consider the radiative correction to the transverse scattering rate in the single-

scattering regime, which emerges naturally in the standard dipole picture [29]. It comes from

the diagrams in Fig. 1 and it reads

�C(k?)
N=1
rad = 4↵sCR

Z
dk+

k+

Z
d2l?
(2⇡)2

C0(l?)
l2?

k2?(l? + k?)2
, (2.2)

where CR is the Casimir factor of the hard jet parton, CR = CF = (N2
c � 1)/2Nc for a quark,

CR = CA = Nc for a gluon. As shown in Fig 1, P is the four-momentum of the hard jet

parton, with p0 = pz = E � T . L denotes the four-momentum acquired from the medium,

and K is chosen in such a way that the hard jet parton acquires a final transverse momentum

of modulus k?. k+ ⌘ (k0 + kz)/2 ⇡ k0 is the light-cone frequency — see App. A for our

conventions. l2?/(k
2
?(l? +k?)2) is then the standard dipole factor and 2CR/k+ the soft limit

of the g  R DGLAP splitting function. Finally, C0(l?) ⇠ g4CAT 3/l4? is the leading order

scattering rate from a gluon source. In App. B we list the known LO results for mD . l? ⌧ T

and for l? & T , as well as a smooth interpolating scheme [13, 14]. For the present discussion

the precise form is irrelevant, as we shall soon see.

Eq. (2.2) is in principle just the first, N = 1 term in the opacity series of multiple

scattering. As observed in [29], the requirement that the transverse momentum carried away

by the gluon is larger than that picked up in a typical collision with the medium, |k?+ l?|�

l?, puts us in the single-scattering regime, where the N = 1 term dominates. This yields

�C(k?)
single
rad = 4↵sCR q̂0

Z
dk+

k+
1

k4?
, with q̂0 ⌘

Z ⇢ d2l?
(2⇡)2

l2? C0(l?) , (2.3)

where we have also taken the harmonic oscillator (HO) approximation: we neglect the ⇢ scale

dependence of the LO transverse momentum broadening coe�cient q̂0, which is treated as a
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K + L �L

K + L �L

Figure 5. Diagrams giving rise to the single-scattering regime. The two horizontal solid lines are the
Wilson lines W. Red gluons are coft, blue ones are HTL-resummed and soft, see main text. Momenta
flow bottom to top.

emitted gluon is collinear, but it carries a momentum fraction k++ l+ ⇡ k+ ⌧ E. Borrowing

the terminology of [69], we call these modes coft, with Q ⇠ �0E(1,�2,�), �,�0
⌧ 1. The

single-scattering processes then arise, in the region we are interested in, from the interaction

of these modes with HTL-resummed soft modes. We portray the relevant diagrams in Fig. 5.

As the two W lines represent the hard jet parton in the amplitude and conjugate am-

plitude, a cut is understood to go horizontally through the middle of each diagram. It then

follows that the first two diagrams in Fig. 5 corresponds to the square of the first two in Fig. 1

and their interference. The third diagram here corresponds to the square of the third there.

Finally the fourth here corresponds to the interference of the first two with the third there.

So in principle we are presented with the evaluation of these diagrams in the specific

scaling k? ⇠
p
gT � l? ⇠ gT , k+ ⇠ T that is responsible for the double log in the strict

scattering regime for µ < T .7 This detailed calculation will be presented in App. D, together

with the discussion of the virtual counterpart to the processes shown in Fig. 1, confirming

that they do not represent a double-logarithmic e↵ect, as per [29]. This Wilson-loop based

determination will thus confirm how these radiative corrections are also encoded in that

object, thus paving the way for our later contact with the UV boundaries of the soft NLO

calculation of Caron-Huot [17], which also used the Wilson loop setup.

7This corresponds to the coft mode K + L ⇠ T (1, g,
p
g), i.e. �0 = T/E,� =

p
g.
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Figure 7. The contour discussed in the main text for the evaluation of the retarded part of the soft
contribution to Eq. (4.14). The corresponding advanced part is not shown. The cross at the origin is
Matsubara zero mode, hence the deformation of the (red) integration contour there, which gives rise
to the Euclidean contribution.

where the �(k�) comes from the Wilson-line integrations at large Lmed and GR (GA) is the

retarded (advanced) gluon propagator. The key observation is that causality dictates that

GR (GA) is analytical in the upper (lower) half k+ plane, so that the only poles are those

in the statistical function, at k0 = k+ = in2⇡T , n 2 Z. In principle we can then close the

contour at infinite k+ and pick up the residues of all these poles. However, for x? � 1/T the

zero mode dominates, yielding the mapping to EQCD. This corresponds to having replaced

1/2 + nB(k+) with T/k+ and closed the contour on an arc AR between the zeroth and first

Matsubara modes, as shown in Fig. 7. If we identify the radius of this arc with k+IR (indeed

gT ⌧ k+IR ⌧ T ), we may take it as large, if we look at things from the soft side of the

calculation. Hence, any function that falls to zero faster than 1/k+ on this arc will only give

rise to inverse powers of k+IR, which could then safely be neglected in the derivation of [17].

This is indeed the case both for the LO and NLO soft contributions — the LO case can be

checked by plugging in Eq. (4.14) the HTL-resummed Coulomb-gauge propagators given in

Eqs. (A.2) and (A.3). In App. C.3 we show that [54] computed diagrams related to those in

Fig. 5, expanded precisely on that AR arc. Starting from these results we show how the arc

terms precisely cancel the T/k+IR ones in Eq. (4.13).

We have thus shown how the IR slice of the double-logarithmic phase space overlaps

with that of the soft contributions determined in [17]. In fact, [17] already commented on

the possible sensitivity to collinear modes (coft in our language) at relative order g2 and how

they would show up, on the soft side, as a failure of the T/k+ classical approximation to the

Bose–Einstein distribution. Our findings thus confirm in detail this general expectation.
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• We computed these diagrams for ,  
 
 

• Caron-Huot computed the same diagrams for 

•  regulator dependence cancels at the boundary.  No double counting

•  naturally switches off 
quantum corrections and turns them into the classical 
ones within the same diagrams

K ≳ T K ≫ L

K ∼ L ∼ gT

1/k+
IR

nB(k+ ≪ T) ≈ T/k+ − 1/2
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Higher : ⟨k2
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• Our approach can be extended 
here

• Larger  semi-collinear rate 
unavailable

• Previous calculation still valid 
to DLA if we subtract triangle 
below 

• Difference with LMW/BDIM 
smaller. Vertical line cuts the 
original triangle in two halves 
of equal surface

⟨l2
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Figure 4. Structure of phase space once the cuto↵ on µ is allowed to increase to values much larger
than the temperature. Notably, region “6” in dark green emerges. It cannot be well described by our
setup due to the associated small formation time.

to subtracting o↵ the area of that triangle. This leads to
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Unsurprisingly, the subtraction of the “6” triangle from the “1+3+6” triangle on the first

line is equal to that of the unshaded “2+5” triangle from the original (a)� (b)� (c) triangle

on the second line. This implies that, for µ > T , our result is closer to the original one of

[29]. This can be better appreciated by noting that the vertical line at k+ = µ2⌧min cuts the

(a)� (b)� (c) triangle into two triangles of equal area. Hence, for !T > µ2⌧min, i.e. µ . T our

result (3.7) is less than half of the original double logarithm (2.6), whereas for µ >
p
!T /⌧min

our result (3.11) is more than half of it.

4 Single scattering for ⌧ < 1/g2T , k+ & T

Our previous section presented all our main results to double logarithmic accuracy forgoing

detail for the sake of a concise and self-contained explanation. In particular, we left out

the detailed evaluation of our main computational result of this paper: the determination of

the strict single scattering contribution for ⌧ < ⌧int and the connection to the soft, classical

contribution. We now provide both. In Sub. 4.1 we describe the general computational

setup, in 4.2 we introduce semi-collinear processes and derive the double-log contribution.

– 13 –
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Outlook: beyond DLA

38

• Difficult to gauge impact of these double logs when single logs or smaller double 
logs are unavailable and the scale of  is unclear

• Way forward: we present a resummation equation for , including all needed 
thermal effects, generalizing LMW and Iancu JHEP10 (2014)

• Its solution would smoothly interpolate between single, few and many scatterings, 
shedding light on these issues by going beyond the harmonic oscillator approx

• Methods such as improved opacity expansion (Barata Mehtar-Tani Soto-Ontoso 
Tywoniuk JHEP09 (2021)) or numerics of Andres et al JHEP07 (2020), JHEP03 
(2021) Isaksen Tywoniuk JHEP09 (2023) could be used

̂q0

δC(k⊥)
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• The emergence of statistical functions in a weakly-coupled QCD seals off the 
low-frequency slice of the original LMW triangle to double logs

• There, double-log-enhanced quantum physics makes way to power-law 
enhanced classical physics

• These results can be used as low  seed to the long-  resummations of Caucal 
and Mehtar-Tani

• Evaluations beyond DLA could shed light on the hierarchy of classical and 
quantum corrections

τ τ
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Vacuum-thermal cancellation

where !c = q̂0L2 is the maximal frequency for medium-induced radiation [60]. This formula

is however only valid for 1/g3T ⌧ Lmed ⌧ 1/g4T , that is for media thicker than a soft mean

free path but thinner that a large-angle scattering mean free path.

We further remark that the e↵ect of a populated medium can be understood, to double-

logarithmic accuracy, as replacing the horizontal ⌧ > ⌧min line with a vertical k+ > !T ⇠ T

line: up to our usual prefactor of ↵sCRq̂0/⇡, 1/4 ln
2(µ4/q̂0!T ) is precisely the area of the

“1+3” shaded triangle in Fig. 3. Since lines k+ = !T and (a) intersect at ⌧ = !T /µ2, this

shaded triangle is entirely above the collinearity bound ⌧k+ > 1.

The physical picture behind the emergence of the !T scale is that for k+ � T the

thermal part nB(k+) of the phase space factor 1/2 + nB(k+) is exponentially small, whereas

for k+ < T , the vacuum part — 1/2 — cancels against the first quantum correction coming

from the expanded nB(k+), i.e.

nB(k
+
⌧ T ) =

T

k+
�

1

2
+O

✓
k+

T

◆
. (3.9)

Hence, the logarithmic part of the integral is una↵ected in the UV, but it is no longer cut o↵

in the IR by the boundary of the integration — q̂0⌧2min — but rather by a quantity of order

T , whose precise value !T emerges as a property of the integral in Eq. (3.2). This can be

better seen from the following simpler single-logarithmic integral, with ⌫IR ⌧ T ⌧ ⌫UV

Z ⌫UV

⌫IR

dk+

k+

⇣
1|{z}

vacuum

+2nB(k
+)| {z }

thermal

⌘
= ln

⌫UV

⌫IR| {z }
vacuum

+
2T

⌫IR

� ln
2⇡T

⌫IRe�E
+O

⇣⌫IR

T
, exp(�⌫UV/T )

⌘

| {z }
thermal

=
2T

⌫IR

+ ln
⌫UVe�E

2⇡T
+O

⇣⌫IR

T
, exp(�⌫UV/T )

⌘
. (3.10)

More details on the evaluation are provided in App. C.1.6

The attentive reader will have noticed that this cancellation does not a↵ect the classical

T/k+ term, which is the largest in the IR, though it is not logarithmically divergent. Instead

this term will yield a contribution that is proportional to power laws of µ and ⌧min; in the

example just shown, this would be the T/⌫IR term. Power-law terms are in general not

physical: they just represent a non-logarithmic sensitivity to a neighboring region and must,

for IR-safe quantities like q̂, cancel with opposite power laws from said region. In our case,

6Analogous cancellations between quantum vacuum and thermal corrections in the soft regime, precisely

related to the ±1/2 term in the expansion of the thermal distributions — the plus sign applies to fermions — are

known in the literature: they are discussed briefly and in general terms in [61]. They shift the Bethe logarithm

in the spectrum of heavy quarkonium from its m↵5
s ln

�
m↵s/(m↵2

s)
�
form in vacuum to a m↵5

s ln(m↵s/!T )

form in a thermal medium obeying m↵s � T � m↵2
s � mD, as shown in [62] — see also [63] for the analogous

case of muonic hydrogen. m↵s is the typical transferred momentum or inverse Bohr radius in this Coulombic,

non-relativistic bound state and m↵2
s the typical binding energy. This is, in single logarithmic form, precisely

the same cancellation we observe: as soon as the temperature becomes larger than the IR scale m↵2
s in the

vacuum log, m↵2
s gets replaced by !T . Similar cancellations also appear in the the power corrections to Hard

Thermal Loops, which receive both vacuum and thermal contributions which are separately IR-divergent but

whose sum is IR-finite [64, 65].
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Semi-collinear processes

P

P �K

K + L

P + L

Figure 6. One of the extra diagrams that appear once the duration of the jet-medium interaction is
comparable to the gluon formation time. The blob represents a resummed Hard Thermal Loop: the
L gluon is thus a time-like plasmon. Diagrams corresponding to the other processes of Fig. 1, as well
as the plasmon emission/gluon absorption crossings are not shown.

Here we instead present a more intuitive derivation, drawing from the literature. Namely,

k? ⇠
p
gT � l? ⇠ gT , k+ ⇠ T is the semi-collinear region identified in [54, 59]. There it was

found that it is precisely this semi-collinear process that happens on a shorter formation time

⌧semi ⇠ 1/(gT ) than the strictly collinear one ⌧coll & 1/(g2T ) through a single scattering with

the medium. The one single scattering exchanges l? ⇠ gT ; its duration is thus of the same

order of ⌧semi, causing the breakdown of the instantaneous approximation. Thus, addressing

this corresponds to “crossing” boundary (c), in the language of [29].

The evaluation of [54, 59] addressed this non-instantaneous nature. In more detail, the

strict collinear regime corresponds, in the momentum labeling of Fig. 1, to l� ⇡ (k? +

l?)2/(2k+) ⇠ g2T ⌧ l+, l? ⇠ gT ,8 as arising from the on-shell conditions for the outgoing

K +L and P �K legs. Thus, when Fourier-transforming the L propagator to position space

one can neglect its l� dependence, leading to instantaneous propagation in the x+ direction.

Conversely, in the semi-collinear regime k? ⇠
p
gT, k+ ⇠ T , so that l� ⇡ k2?/(2k

+) ⇠ gT ⇠

l+, l? ⇠ gT . Hence the outgoing gluon has the scaling (K + L) ⇠ T (1, gT,
p
gT ), which is

what was identified in [54, 59] as semi-collinear. In our language it represents a specific coft

scaling, as per Footnote 7. In this scaling l� is no longer negligible with respect to l+ and l?,

so that the L gluon exchange is no longer instantaneous in x+. In momentum space, this no

longer restricts L to space-like values, thus opening the phase space for the absorption and

emission of soft, time-like plasmons, as shown in the example in Fig. 6.

We can then directly take the results of [54], which computed these semi-collinear pro-

cesses in the non-abelian case. By inspecting Fig. 10 of [54] one arrives at the dictionary

K[54] ! L, Q[54] ! K. The derivation of [54, 59] lead to an integrated-in-transverse momen-

tum rate; however, in intermediate steps a consistent labeling of momenta was maintained in

all diagrams, so that this integration can be undone naturally. We can then take Eq. (8.8)

of [54], undo the transverse integration, apply the dictionary and take the soft-gluon limit

x ! 0 in the q ! qg and g ! gg processes, together with a p ! 1 one for consistency. This

8We are taking the energy of the hard jet parton to be infinite, in accordance with our general setup.
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P

P �K

K + L

P + L P

P �KP �K � L

K + L

P

P �K

K
K + L

Figure 1. Diagrams contributing to radiative momentum broadening in the single-scattering regime.
The double solid line represents the hard jet parton (quark or gluon), curly lines are gluons and the
cross is a quark or gluon scattering center in the medium.

jet partons in the final state, in what is no longer a di↵usive process — see e.g. [51, 52]. This

µ factorisation also allows the incorporation in the e↵ective kinetic description of [53, 54],

where q̂(µ) is (one of) the transport coe�cients describing di↵usive momentum exchanges at

scales below µ. There it is complemented by the full kinetic description above that cuto↵.

We now consider the radiative correction to the transverse scattering rate in the single-

scattering regime, which emerges naturally in the standard dipole picture [29]. It comes from

the diagrams in Fig. 1 and it reads

�C(k?)
N=1
rad = 4↵sCR

Z
dk+

k+

Z
d2l?
(2⇡)2

C0(l?)
l2?

k2?(l? + k?)2
, (2.2)

where CR is the Casimir factor of the hard jet parton, CR = CF = (N2
c � 1)/2Nc for a quark,

CR = CA = Nc for a gluon. As shown in Fig 1, P is the four-momentum of the hard jet

parton, with p0 = pz = E � T . L denotes the four-momentum acquired from the medium,

and K is chosen in such a way that the hard jet parton acquires a final transverse momentum

of modulus k?. k+ ⌘ (k0 + kz)/2 ⇡ k0 is the light-cone frequency — see App. A for our

conventions. l2?/(k
2
?(l? +k?)2) is then the standard dipole factor and 2CR/k+ the soft limit

of the g  R DGLAP splitting function. Finally, C0(l?) ⇠ g4CAT 3/l4? is the leading order

scattering rate from a gluon source. In App. B we list the known LO results for mD . l? ⌧ T

and for l? & T , as well as a smooth interpolating scheme [13, 14]. For the present discussion

the precise form is irrelevant, as we shall soon see.

Eq. (2.2) is in principle just the first, N = 1 term in the opacity series of multiple

scattering. As observed in [29], the requirement that the transverse momentum carried away

by the gluon is larger than that picked up in a typical collision with the medium, |k?+ l?|�

l?, puts us in the single-scattering regime, where the N = 1 term dominates. This yields

�C(k?)
single
rad = 4↵sCR q̂0

Z
dk+

k+
1

k4?
, with q̂0 ⌘

Z ⇢ d2l?
(2⇡)2

l2? C0(l?) , (2.3)

where we have also taken the harmonic oscillator (HO) approximation: we neglect the ⇢ scale

dependence of the LO transverse momentum broadening coe�cient q̂0, which is treated as a
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soft time-like plasmon
soft scattering

leads to

(2⇡)2
d�semi

dk+d2k?
=

g2CR

⇡k+k4?
(1 + nB(k

+))q̂

✓
⇢;

k2?
2k+

◆
, (4.6)

whence — see Eq. (2.1)

�C(k?)semi =
g2CR

⇡k4?

Z
dk+

k+
(1 + nB(k

+))q̂

✓
⇢;

k2?
2k+

◆
. (4.7)

q̂(⇢; k2?/2k
+) is a modified (adjoint) q̂ that also accounts for the l�-dependence, i.e.

q̂(⇢; l�) = g2CAT

Z ⇢ d2l?
(2⇡)2


m2

Dl
2
?

(l2? + l�2)(l2? + l�2 +m2
D)

+ 2
l�2

l2? + l�2

�
. (4.8)

In the l� ⌧ gT limit it reduces to the soft contribution to q̂0(⇢) [13] in Eq. (B.5), and thus

Eq. (4.7) reduces, up to the statistical factor, to Eq. (2.3). With respect to Eq. (8.8) of [54] we

have also undone the subtractions performed there, which were meant to isolate the strictly

semi-collinear process from its collinear and harder limits, so as to avoid double countings.

Something similar needs to happen here: elastic 2 $ 2 scatterings exchanging k? � gT are

the hard contribution to q̂, as in [14]. As we show in detail in App. C.2, the integration

over the leading-order phase space does include the region where
p
gT . k? . T and either

the incoming or outgoing gluon from the medium (L here) becomes soft, L ⇠ gT . As that

calculation treats this gluon with bare propagators, it does not properly account for its soft

dynamics, as encoded by HTL resummation. Hence, the semi-collinear limit of the calculation

of [14] must be subtracted from Eq. (4.8), to avoid double counting it. This yields

q̂(⇢; l�)subtr ⌘ q̂(⇢; l�)� q̂(⇢; l�)[14] = g2CAT

Z ⇢ d2l?
(2⇡)2

m2
Dl

2
?

(l2? + l�2)(l2? + l�2 +m2
D)

, (4.9)

i.e. it removes the second term of Eq. (4.8), precisely as found in [54, 59].

Eq. (4.9), when plugged in Eq. (4.7), is UV log-divergent for ⇢ � l�,mD. This is not

unexpected, as Eq. (4.7) is obtained under the assumption that l? ⌧ k?. We can thus set

⇢ ⌧ k? ⌧ µ, leading to

q̂(⇢; l�)subtr = ↵sCAT

⇢
m2

D ln

✓
⇢2

m2
D

◆

| {z }
HO

�l�2 ln

✓
1 +

m2
D

l�2

◆
�m2

D ln

✓
1 +

l�2

m2
D

◆

| {z }
l��dependent

�
. (4.10)

Our labeling in the underbraces emphasizes that the first, l�-independent term is precisely

Eq. (B.5), the harmonic oscillator approximation to q̂0(⇢) for gT ⌧ ⇢ ⌧ T . In our adoption

of the HO approximation, we may for the moment treat ⇢ as a parameter. If we were to go

beyond it, we would have to complement the evaluation here with the neighboring region,

where k? ⇠ l? � gT . That scaling includes both a single harder scattering and a multiple

scattering contribution, which arises when |k?+l?| becomes small, causing the formation time

to become long. Addressing these processes properly requires dealing with LPM resummation

beyond the HO approximation: we discuss this outlook in Sec. 5.
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The resummation equation
<latexit sha1_base64="Z6eLl/WmRnDFmfK01RPf1iHaW2E="></latexit>

�C(x?) = �2↵sCRRe

Z
dk+

k+3

✓
1

2
+ nB(k

+)

◆Z Lmed

0
d⌧ rB2? ·rB1?


G̃(B2?,B1?; ⌧)� vac

�����
B2?=x?,B1?=0

B2?=0,B1?=0

Secondly, Eq. (5.1) is in the harmonic oscillator approximation, i.e.

Cp(x?)
HO
=

q̂p
4
x2?, (5.6)

We can then undo this approximation, so that Eq. (5.2) becomes

⇢
i@z+

r
2
B?

�m2
1 g

2!
+i


Cp(x?)+

1

2

�
Cg(B?)+Cg(|B?�x?|)�Cg(x?)

���
G(B?, z;B1?, z1) = 0,

(5.7)

where we have also introduced the gluon’s asymptotic mass, with m2
1 g = m2

D/2 at leading

order — see [72] for the NLO determination and [73, 74] for non-perturbative contributions.11

Let us comment that the form of Eq. (5.7) decomposes the three-body scattering kernel

(the hard jet parton in the amplitude and conjugate amplitude and the radiated gluon) into

three two-body kernels with di↵erent color assignments. Perturbatively this is valid up to the

O(g) NLO corrections, as discussed in [17]. The long-distance, non-perturbative behaviour of

this three-pole object is at present unknown. For a leading-order determination of radiative

correction from this formalism, it should su�ce to use the smooth kernel provided by the

Fourier transform of Eq. (B.3) as Cq and Cg in Eq. (5.7). We refer to [26, 75] for details on

this numerical transform.

Finally, we can also account for the e↵ect of a populated medium. We can thus replace

! with k+, in keeping with our notation, and consider the e↵ects of stimulated emission and

absorption,
R
d!✓(!) !

R
dk+(1/2+nB(k+)). In a longitudinally uniform medium G is only

a function of ⌧ ⌘ z2 � z1,12 so that we can use our identification (5.5) to obtain, in the

large-Lmed limit

�C(x?) = ↵sCRRe

Z
dk+

k+3

✓
1

2
+ nB(k

+)

◆Z Lmed

0
d⌧ rB2? ·rB1?


eCp(x?)⌧G(B2?,B1?; ⌧)

� vac

�����
B2?=x?

B2?=0

����
B1?=x?

B1?=0

.

(5.8)

We observe that the source-specific part of the scattering kernel in the Hamiltonian (5.7)

and the amplification factor eCp(x?)⌧ can be eliminated by noting that if G̃(B?,B1?; ⌧) ⌘

eCp(x?)⌧G(B?,B1?; ⌧) is a Green’s function of the operator

⇢
i@⌧ +

r
2
B?

�m2
1 g

2k+
+

i

2

�
Cg(B?) + Cg(|B? � x?|)� Cg(x?)

��
G̃(B?,B1?; ⌧) = 0, (5.9)

11This mass term is necessary when r2
B? , the transverse momentum of the gluon, becomes of order g2T 2;

it can be neglected in the deep LPM regime, where typical transverse momenta are larger, k2
? ⇠

p
q̂0!, with

! � T .
12The generalisation to a longitudinally varying medium is straightforward.
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• The mass shift is then  for a hard quark close to the mass shellm2
∞ = g2T2/3

Hard partons through the medium
• Imagine a hard quark propagating through a medium with 

. Dispersive and dissipative interactionsp+ ≡ p0 + pz

2 ≫ T
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• Half of the bosonic integral comes from the  regionq ≲ T
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• We can then expect large contributions from soft classical gluons
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Classical gluons and the asymptotic mass
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• For  this contribution becomes non-perturbative, q ≲ gT g2nB(q) ∼ 1
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• From Feynman diagrams to EFT operators, concentrate on  Zg
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The asymptotic mass, non-perturbatively
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with vµ = (1, 0, 0, 1)
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D
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⌫
µ

E

Caron-Huot (2008)

absorbed into the coe�cient on the field strength in the action, S =
R

1

2g2TrF
2+ . . .. These

condensates represent the contribution of forward scattering in the medium, with 1/(v ·D)

or (v ·D)2 accounting for the lightlike (eikonalized) propagation through the medium and

 ̄, or v�F �µ representing an interaction with a medium excitation. The leading-order,

long-distance approximation to these condensates reproduce the forward-scattering part of

the hard thermal loop e↵ective action along the light cone.

The gauge part of (1.3) can be related to an integral over the correlator of two covariant

Lorentz force vectors in position space [15]

Zg = �
1

g2dA

Z 1

0

dx+ x+hvk µF
µ⌫
a (x+, 0, 0?)U

ab
A (x+, 0, 0?; 0, 0, 0?)vk ⇢F

⇢
b ⌫(0, 0, 0?)i , (1.5)

where the x+ integration and the modified adjoint Wilson line Uab
A

arise from 1/(v ·D)2.

Locations in space-time are described by three-vectors (x+, x�, x?) in light-cone coordi-

nates. Because the jet is highly relativistic, we have x� = t � z = 0 in the plasma frame.

The problem therefore e↵ectively reduces to three dimensions, two in the transverse plane

x?, where rotational invariance is present, and a coordinate that encompasses the elapsed

time t for the jet as well as its covered distance z in the medium x+ = (t + z)/2 ⌘ L.

We use the convention that the z-component of k is the jet’s direction of propagation, so

v = (1, 0, 0, 1).

Figure 1. Pictorial motivation for the form of the correlator (1.5).

At this point, we would like to briefly build up some intuition for the specific form

of (1.5). We can distinguish two sorts of jet-medium interactions. First, there is true

scattering, where the transverse momentum of the jet particle changes; this is described

by the transverse momentum broadening kernel C(b?) [22]. But there is also forward

scattering, where the jet particle temporarily changes direction before scattering back into

its original state (or more technically, a scattering creates an amplitude in a di↵erent

momentum state, which subsequently scatters again to return to the original momentum,

introducing a phase shift). Such forward scattering is what causes a dispersion correction.

It can be understood qualitatively as the jet particle making a scattering-induced detour, as

pictured in Fig. 1. The sum of all such forward scattering possibilities induces an e↵ective

mass term [23].

– 3 –

Moore Schlusser (2020)
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• From Feynman diagrams to EFT operators, concentrate on   
 
 

• Breakthrough: soft classical modes at space-like separations become  
Euclidean and time-independent. Light-like limit possible, see main talk 
before for caveats in the case of . 

• Horrible HTL perturbative calculation or extremely challenging 4D lattice on 

the light-cone become 3D Electrostatic QCD (EQCD). NLO 

Zg

̂q

δZg = − TmD

2π

The asymptotic mass, non-perturbatively

Caron-Huot (2008)
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• From Feynman diagrams to EFT operators, concentrate on   
 
 

• Our strategy: lattice EQCD for , pQCD for  
What does it mean in practice?

• Recently: continuum-extrapolated EQCD lattice data for the scattering 
kernel and merging with pQCD Moore Schlusser PRD101 (2020) Moore 
Schlichting Schlusser Soudi JHEP2110 (2021) Schlichting Soudi PRD105 (2022)

Zg

L ≳ 1/mD L ≲ 1/mD ∼ 1/gT

The asymptotic mass, non-perturbatively
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EQCD

• EQCD is the dimensionally-reduced (3D) EFT for the classical modes, which 
correspond to the Euclidean zero modes. 3D SU(3) + adjoint Higgs ( ) 
 
 
 
Kajantie Laine Rummukainen Shaposhnikov (1995-97) Braaten Nieto (1994-95)

• By putting EQCD on the lattice we can get the classical contribution non-
perturbatively at all orders. But how?

A0 → Φ

52
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EQCD

• In practice, we get continuum-extrapolated results for
 at a few discrete values of .  

Moore Schlusser PRD102 (2020) JG Moore Schicho Schlusser JHEP02 (2021)

• We need to match to the 4D continuum, since EQCD has the wrong UV

• Start by computing the EQCD correlator to NLO

Tr ⟨U(−∞; L)F(L) U(L; 0) F(0)U(0; − ∞)⟩EQCD L

53
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Figure 1. Diagrams contributing to leading and next-to-leading order to the EQCD force-force
correlator Z3d

g (3.4). An external gray shaded vertex denotes a DxΦ or F xz insertion; internal 2-point
blobs the respective self-energy; a double line a Wilson line; and a curly line a spatial gauge boson
(Ai). A solid line is a placeholder for either an adjoint scalar (Φ) or a spatial gauge boson (otherwise
curly).

scales in the domain L ∈ [0,∞). The ultraviolet (UV) region is precisely where we expect

corrections from full QCD that are not included in EQCD. Fortunately, these contributions

should be under better perturbative control than the IR regime due to asymptotic freedom.

The corresponding diagrams are compiled in fig. 1.

Computing the three correlators in EQCD, ⟨EE⟩, i⟨EB⟩, and ⟨BB⟩, is only possible at

finite values of g23dL on the lattice. Beyond the feasible range of g23dL on the lattice, one has to

rely on models. For large g23dL, one can fit the largest-g23dL lattice data points to asymptotic

models, as done in [16] and updated in sec. 5. This regime produces a small contribution

because the correlators decay exponentially here. For small g23dL, perturbation theory is

supposed to work in EQCD. Since the three-dimensional coupling g23d carries mass dimension

one, and the correlators carry mass dimension three, dimensional analysis tells us that the

tree-level EQCD expressions can go as 1/L3 in the small-g23dL-limit at worst, whereas the

one-loop level can contain g23d/L
2 at worst, and all higher loop levels are O(g43d/L) at worst.

The L dL integration leading to Z3d
g in (3.4) can therefore receive UV-divergent contributions

only from the O(1/L3) LO terms or from the O(g23d/L
2) NLO terms.6 All higher-order

contributions to Z3d
g are short-distance finite. Therefore, a one-loop analytical calculation

of the three correlators is not only required quantitatively for increasing the agreement of

lattice data and perturbation theory at small g23dL, but also qualitatively for a comprehensive

treatment of all possible UV divergences. Note that this short-distance region is where EQCD

no longer provides a good description of full QCD. Nevertheless, an accurate treatment of

this region will be needed when we carry out the matching to the full four-dimensional theory,

which we leave to a future publication.

Below, we present the next-to-leading order perturbative calculation in EQCD. Its mass

parameter m2
D is fully resummed and not treated as a perturbation of O(g2), while also fully

taking the quartic Φ-vertex into account . Furthermore, we employ momentum-space gauge

6When we talk about leading or next-to-leading order in the following, we refer to orders in the EQCD

perturbative expansion in g23d, being related but not to be confused with the full QCD perturbative expansion

in g. We will thus drop the previously adapted -in-EQCD specifiers.

– 8 –
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• Good agreement in the UV, excellent at high  GeV T = 100

JG Moore Schicho Schlusser (2021)

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0 0.5 1 1.5 2

⟨E
E
(L

)⟩
L
3

g23dL

lattice data

LO PT

NLO PT

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0 0.5 1 1.5 2

−
⟨B

B
(L

)⟩
L
3

g23dL

Figure 2. Continuum-extrapolated ⟨EE⟩L3 (left) and −⟨BB⟩L3/g23d (right) from leading-order
perturbative (LO PT), next-to-leading-order perturbative (NLO PT), and lattice data at T = 100 GeV
and Nf = 5 (cf. tab. 1). Correlators are multiplied by (g23dL)

3 to balance the leading divergence.

The correlator i⟨EB⟩ vanishes at leading order. Therefore an analysis of its convergence

would require a NNLO result, which is not available as of now.

Figure 3 collects lattice data at all four pairs of (T,Nf) and includes their corresponding

NLO predictions. It can be seen that with smaller temperatures – and larger coupling – the

onset of perturbative behavior in the UV decreases to smaller g23dL. Figure 3 also shows that

perturbation theory qualitatively predicts well i⟨EB⟩ at small g23dL and high temperatures

where the coupling is small due to asymptotic freedom. With lower temperatures and larger

separations the agreement with our lattice data becomes gradually worse until perturbation

theory even fails to predict the correct sign of i⟨EB⟩ at small separations and the smallest two
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dLL
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∫

dLL (corr)NLO , (5.2)

with the NLO form of the correlators in (4.12), (4.13), and (4.14). The last integral can

be done analytically, whereas the difference in the first integral is numerically much better

behaved: O
(

g43d/L
)

instead ofO
(

1/L3
)

for ⟨EE⟩ and ⟨BB⟩, or g23d/L
2 for i⟨EB⟩, respectively.

At this point, we would like to caution the reader that this procedure is purely motivated to

– 16 –

<latexit sha1_base64="2k+MMWQzWxrcN7Uy+vsb/Oz7fcQ="></latexit>

ZEQCD
g =

T

2

Z 1

0
dLL

�
hEEi � hBBi � hEBi

�



EQCD results

55

JG Moore Schicho Schlusser (2021)

<latexit sha1_base64="2k+MMWQzWxrcN7Uy+vsb/Oz7fcQ="></latexit>

ZEQCD
g =

T

2

Z 1

0
dLL

�
hEEi � hBBi � hEBi

�

• IR tails modeled by non-perturbative exp. falloff (magnetic screening)

• UV tails handled by perturbative EQCD

0.00

0.20

0.40

0.60

0.80

1.00

0 0.5 1 1.5 2 2.5 3

⟨E
E
(L

)⟩
L
3

g23dL

T = 100 GeV

T = 1 GeV

T = 500 MeV

T = 250 MeV

0.00

0.10

0.20

0.30

0.40

0.50

0 0.5 1 1.5 2 2.5 3

−
⟨B

B
(L

)⟩
L
3

g23dL

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0 0.5 1 1.5 2 2.5 3

i(
⟨E

B
(L

)⟩
+
⟨B

E
(L

)⟩
)L

/g
4 3d

g23dL

0.00

0.20

0.40

0.60

0.80

1.00

0 0.5 1 1.5 2 2.5 3

(⟨
E
E
⟩
−

⟨B
B
⟩
−

i⟨
E
B
⟩ 3

d
)L

3

g23dL

Figure 3. Continuum-extrapolated EQCD lattice data on the three separate correlators ⟨EE⟩L3,
−⟨BB⟩L3/g23d, i⟨EB⟩L/g53d, (cf. tab. 1) and the dLL integrand of eq. (3.4) with modelled long L-tail
(short dashes) and our NLO perturbative estimate (long dashes). Powers of g23dL balance the expected
leading divergence of the respective correlator, again.

accelerate numerical convergence and has no physical meaning, in contrast to the subtractions

in the following subsection.

As elaborated in [16], it is necessary to model the large-g23dL tail of the correlators in

order to perform the dLL integration up to ∞. For ⟨EE⟩ and ⟨BB⟩, the functional form,

motivated by [30], is
A

(

g23dL
)2 exp(−B · g23dL) , (5.3)

with the fitting constants A and B. Considering i⟨EB⟩, we find that the data rather follows

A′ exp(−B′ · g23dL) , (5.4)

with the respective fitting constants A′ and B′. As already argued above, the impact of

i⟨EB⟩ on Zg is small. Also, the error associated with the large-g23dL tail given in tab. 1
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• Integration UV-divergent ( )

• EQCD super-renormalizable, 

• Only the first two terms give rise to power-law and log divergences. They 
must cancel with the IR limits of a bare calculation in full thermal QCD. This 
is easily verified for the power law, that can simply be subtracted

• For the log in a first stage we introduce an intermediate cutoff regulator 

 and integrate numerically the UV-subtracted EQCD data

L → 0

⟨FF(L → 0)⟩ = c0
1
L3 + c2

g2T
L2 +…

−c2
g2T
L2 θ(L0−L)

JG Moore Schicho Schlusser (2021)
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• Proper handling of the log divergence requires the two-loop calculation in 
thermal QCD 
 

• Only diagram c matters in Feynman gauge

• Translated the cutoff to dimensional regularisation.  
UV pole of EQCD cancels IR pole of QCD, leaving  
behind a  term. Regulator dependence  
gone! Regulator-independent classical contribution 
 negative

g2T2 ln(T/mD)

JG Schicho Schlusser Weitz 2312.11731

(a) (b) (c) (d1) (d2) (e)

(f) (g) (h) (i) (j)

Figure 1: Diagrams contributing to the leading and next-to-leading order to the QCD force-

force correlator Zg (2.24). An external gray shaded vertex denotes an F−⊥ insertion; internal

2-point blobs the respective self-energy; a double line a Wilson line; and a curly line a gauge

boson (Aµ). {fig:diagrams}

be pursuing. However, for the specific case of quantizing the system along the lightcone and

probing infrared physics, as it is the case for a jet acquiring an effective mass from plasma

interactions with the medium, Caron-Huot has provided a drastic simplification to that ap-

proach [5], also see Appendix A in [6]. The idea is to take the common thermal expressions

in full QCD and add an imaginary part to their pnz = pz + i2πnT , where n is the index of

the time layer in the Matsubara-formalism. We show the calculation in the upcoming sub-

section at LO, bearing in mind that this formalism will (probably) not translate to the NLO

calculation.

3.1. Full leading order
{sec:qcd}

Following the formalism put forward by Caron-Huot [5], we work out the leading order (LO)

and next-to leading order perturbative expressions for the gauge condensate Zg in full QCD.

The calculation will be carried out along lightcone coordinates, c.f. (2.2). For the sake of

simplicity, we work in Feynman gauge in the following, meaning that the gauge propagator

reads

G>
µν; ab(x) =

∑

n

∫
dd+1q

(2π)d+1
ei(xzqz+b⊥·q⊥) δabηµν

q2n + (qz + iqn)2 + q⊥2
, (3.1) {prop}{prop}

where d refers to the number of transverse directions which we finally want to send to d → 2.

In lightcone-coordinates, our correlator reads

⟨vk µF
µν
a (x+, 0, 0⊥)U

ab
A (x+, 0, 0⊥; 0, 0, 0⊥)vk ρF

ρ
b ν(0, 0, 0⊥)⟩

= ⟨F+x
a (x+, 0, 0⊥)U

ab
A (x+, 0, 0⊥; 0, 0, 0⊥)F

+
b x(0, 0, 0⊥)⟩ , (3.2) {eq:cor:full}{eq:cor:full}

with the Wilson line in adjoint representation

Uab
A (x+, 0, 0⊥; 0, 0, 0⊥) = P exp

[
−ig

∫ x+

0
ds+Ac

−(s+, 0, 0)f
abc

]
. (3.3) {eq:U:A:4d}{eq:U:A:4d}
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• Proper handling of the log divergence requires the two-loop calculation in 
thermal QCD 
 

• Only diagram c matters in Feynman gauge

• Remainder of the calculation suggests emergence 
 of  double-logarithmic enhancements 
 in the jet’s energy
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