Hyperfine interactions in heavy quarkonia

Speakers : Maria Maló Vasco Valverde Project Supervisors : Alfred Stadler and Elmar Biernat

Standard Model

 → hadrons: bound states of strongly interacting quarks
 → mesons: quark-antiquark
 → baryons: 3 quarks

Quark and Anti-quark Potential

→ One Gluon Exchange + Linear Confinement:

$$V(r) = -\frac{\alpha_s}{r} + \sigma r$$

→ Good description of the bottomonium spectrum

Objectives

- → Study effects of hyperfine interaction in meson masses
 - → Solve numerically the Schrödinger equation in momentum space for linear and Coulomb potentials

Approach:

- → Treat the singularities analytically
- \rightarrow Turn the S.E. into an eigen value problem

- → Obtain the Schrödinger equation in momentum space
- → Do the partial wave decomposition for linear and Coulomb potential

$$\frac{p^2}{2m_R}\psi_{\ell}(p) - \frac{2\sigma}{\pi} P \int_0^{\infty} dk \left\{ \frac{2k^2}{(k^2 - p^2)^2} \left[P_{\ell}(y)\psi_{\ell}(k) - \psi_{\ell}(p) \right] \right\}$$
Singular at k = p
$$- \frac{P'_{\ell}(y)}{4p^2} \ln\left(\frac{p+k}{p-k}\right)^2 \psi_{\ell}(k) + \frac{2w'_{\ell-1}(y)}{4p^2}\psi_{\ell}(k) \right\} = E\psi_{\ell}(p)$$
Singular at k = p

- → Treat the singularities in linear and Coulomb potential
 - → The idea is to rewrite our singularities into integrals we know how to calculate
 - → The remaining integral will no longer be singular

$$\frac{2k^{2}}{(k^{2}-p^{2})^{2}} \begin{bmatrix} P_{\ell}(y)\psi_{\ell}(k) - \psi_{\ell}(p) \end{bmatrix} \longrightarrow P \int_{0}^{\infty} \frac{dk}{k^{2}-p^{2}} = 0$$

$$= \underbrace{\frac{p\psi_{\ell}'(p)}{k^{2}-p^{2}}}_{k^{2}-p^{2}} + \psi_{\ell}'(p)\frac{2k+p}{(k+p)^{2}} + \frac{2k^{2}R_{\ell}(k)}{(k+p)^{2}} \longrightarrow P \int_{0}^{\infty} \frac{dk}{k^{2}-p^{2}} = 0$$

$$= \underbrace{\frac{p\psi_{\ell}'(p)}{k^{2}-p^{2}}}_{l_{1}} + \psi_{\ell}'(p)\frac{2k+p}{(k+p)^{2}} + \frac{2k^{2}R_{\ell}(k)}{(k+p)^{2}} \longrightarrow P \int_{0}^{\infty} \frac{dk}{k^{2}-p^{2}} = 0$$

$$= \underbrace{\frac{p\psi_{\ell}'(p)}{k^{2}-p^{2}}}_{l_{1}} + \psi_{\ell}'(p)\frac{2k+p}{(k+p)^{2}} + \frac{2k^{2}R_{\ell}(k)}{(k+p)^{2}} \longrightarrow P \int_{0}^{\infty} \frac{dk}{k^{2}-p^{2}} = 0$$

$$= \underbrace{\frac{p\psi_{\ell}'(p)}{k^{2}-p^{2}}}_{l_{1}} + \psi_{\ell}'(p)\frac{2k+p}{(k+p)^{2}} + \frac{2k^{2}R_{\ell}(k)}{(k+p)^{2}} \longrightarrow P \int_{0}^{\infty} \frac{dk}{k^{2}-p^{2}} = 0$$

$$= \underbrace{\frac{p\psi_{\ell}'(p)}{k^{2}-p^{2}}}_{l_{1}} + \underbrace{\frac{2k^{2}}{(k^{2}-p^{2})^{2}}}_{l_{1}} + \underbrace{\frac{2k^{2}}{(k+p)^{2}}}_{l_{1}} + \underbrace{$$

→ Obtain singularity free S.E. for linear and Coulomb potentials

$$egin{aligned} &\left(rac{p^2}{2m_R}-rac{lpha\pi p}{2}+rac{\sigma\pi}{2p}
ight)\psi_\ell(p)-rac{lpha}{\pi p}\int_0^\infty dk\left[kQ_\ell(y)\psi_\ell(k)-rac{p^2}{k}Q_0(y)\psi_\ell(p)
ight]\ &-rac{2\sigma}{\pi}\int_0^\infty dk\left\{rac{2k^2}{(k^2-p^2)^2}\left[P_\ell(y)\psi_\ell(k)-\psi_\ell(p)
ight]-rac{p\psi_\ell'(p)}{k^2-p^2}\ &-rac{Q_0(y)}{2p^2}\left[P_\ell'(y)\psi_\ell(k)-rac{p}{k}P_\ell'(1)\psi_\ell(p)
ight]+rac{W_{\ell-1}'(y)}{2p^2}\psi_\ell(k)
ight\}=E\psi_\ell(p) \end{aligned}$$

- -

→ Use the Gauss Legendre Quadrature to solve the integrals (discretizing p)

$$p \to p_i \quad k \to p_j \qquad \qquad \int_0^\infty dk \, f(k) \to \sum_{i=1}^N w_i f(k_i)$$

→ Evaluate this term

$$egin{aligned} &\lim_{k o p} \left\{ rac{2k^2}{(k^2-p^2)^2} \left[P_\ell(y)\psi_\ell(k) - \psi_\ell(p)
ight] - rac{p\psi_\ell'(p)}{k^2-p^2}
ight\} \ &= -rac{3}{4}\psi_\ell'(p) + rac{1}{4} \left[rac{P_\ell'(1)}{p^2}\psi_\ell(p) + \psi_\ell''(p)
ight] \end{aligned}$$

→ Now our SE has first and second derivatives in it!

→ We can put our derivatives in terms of an interpolating function

$$\psi_{\ell}(p) = \sum_{j} \psi_{\ell}(p_j) L_j(p)$$

→ What should be this interpolation function?

Solution 1: cubic splines

→ The derivatives are approximated to derivatives of an interpolating function

$$egin{aligned} S_i(x) &= a_i + b_i x + c_i x^2 + d_i x^3, \quad x \in \{x_{i-1}, x_i\} \ \psi_i' &= \sum_j D_{ij}^{(1)} \, \psi_j, \quad \psi_i'' = \sum_j D_{ij}^{(2)} \, \psi_j \end{aligned}$$

→ Choose boundary conditions to match proper wave behavior

Solution 2: Lagrange Interpolation

$$\psi_{\ell}(p) = \sum_{j} \psi_{\ell}(p_j) L_j(p)$$

$$L_j(p) = \prod_{\substack{k=1 \ k \neq j}}^n \frac{p - p_k}{p_j - p_k}.$$

$$\psi_l'(p_i) = \sum_j L_j'(p_i)\psi_l(p_j)$$

$$\psi_l''(p_i) = \sum_j L_j''(p_i)\psi(p_j)$$

 \rightarrow Choose n p_k points to be the closest to p_i

→ Solve the eigen-value and vector problem for the matrix obtained

$$\begin{split} & \left[\frac{p_i^2}{2\mu} + \frac{\sigma\pi}{2p_i}\frac{\ell(\ell+1)}{2} - \frac{\alpha\pi p_i}{2}\right]\Psi_{\ell}(p_i) - \frac{2\sigma}{\pi}\sum_{j=1,\,j\neq i}^N w_j \left\{\frac{2p_j^2}{(p_j^2 - p_i^2)^2} [P_{\ell}(y_{ij})\Psi_{\ell}(p_j) - \Psi_{\ell}(p_i)] - \frac{p_i D_{ij}^{(1)}\Psi_{\ell}(p_i)}{p_j^2 - p_i^2}\right\} \\ & - \frac{2\sigma}{\pi}w_i \left\{\frac{3}{4p_i}D_{ij}^{(1)}\Psi_{\ell}(p_i) + \frac{1}{4} \left[\frac{\ell(\ell+1)}{2p_i^2}\Psi_{\ell}(p_i) + D_{ij}^{(2)}\Psi_{\ell}(p_i)\right]\right\} \\ & + \frac{2\sigma}{\pi}\sum_{j=1,\,j\neq i}^N w_j \frac{1}{4p_i^2}\ln\left(\frac{p_i + p_j}{p_i - p_j}\right)^2 \left[P_{\ell}'(y_{ij})\Psi_{\ell}(p_j) - P_{\ell}'(1)\frac{p_i}{p_j}\Psi_{\ell}(p_j)\right] - \frac{2\sigma}{\pi}\sum_{j=1}^N w_j \frac{W_{\ell-1}'(y_{ij})}{2p_i^2}\Psi_{\ell}(p_j)\right\} \\ & - \frac{\alpha}{\pi}\sum_{j=1,\,j\neq i}^N w_j \frac{1}{2}\ln\left(\frac{p_i + p_j}{p_i - p_j}\right)^2 \left[\frac{p_j}{p_i}P_{\ell}(y_{ij})\Psi_{\ell}(p_j) - \frac{p_i}{p_j}\Psi_{\ell}(p_i)\right] + \frac{\alpha}{\pi}\sum_{j=1}^N w_j \frac{p_j}{p_i}W_{\ell-1}(y_{ij})\Psi_{\ell}(p_j) = E\Psi_{\ell}(p_i) \end{split}$$

Eigen value problem! $\longrightarrow \sum_{j} M_{ij} \psi_j = E \psi_i$

Results: Linear Potential with cubic splines

Test case of the Schrodinger equation with linear potential : the exact solutions for I = 0 (S wave) are known Airy Functions. Results with 1000 integration points. $\sigma = 1 \text{ m}_r = 1/2$

n	Numerical Results	Exact Values	n	Numerical Results	Exact Values
1	2.3381073948	2.3381074105	6	9.0226565188	9.0226508533
2	4.0879490817	4.0879494441	7	10.0401871972	10.0401743416
3	5.5205592518	5.5205598281	8	11.0085487188	11.0085243037
4	6.7867079666	6.7867080901	9	11.9360572362	11.9360155632
5	7.9441352618	7.9441335871	10	12.8288428719	12.8287767529

Results: Linear Potential with Lagrange

np = 1000 NL= 5

n	Numerical Results	Exact Values	n	Numerical Results	Exact Values
1	2.3381074105	2.3381074105	6	9.0226508400	9.0226508533
2	4.0879494442	4.0879494441	7	10.0401743111	10.0401743416
3	5.5205598281	5.5205598281	8	11.0085242419	11.0085243037
4	6.7867080889	6.7867080901	9	11.9360155581	11.9360155632
5	7.9441335823	7.9441335871	10	12.8287767217	12.8287767529

Bottomonium System

HyperFine Interactions in One Gluon Exchange

Pauli-Villars regularization (form factor)

$$egin{aligned} V(ec{q}^2) &= -4lpha_s\pi\left(rac{1}{q^2}-rac{1}{q^2+\Lambda^2}
ight) \ &= rac{4lpha_s\pi}{q^2}\left(rac{\Lambda^2}{q^2+\Lambda^2}
ight) \ &\Lambda=2m_h \end{aligned}$$

Results with Lagrange Interpolation Bottomonium

np = 100 NL= 5 units: GeV

	n	Non-relativistic (without form factor)	Non-relativistic (with form factor in Coulomb)	Non-relativistic (with form factor in Coulomb+Linear)	Non-relativistic (with form factor + Spin-Spin)	Experimental results
l = 0	1	9.444	9.478	9.453	9.373	9.398
	2	10.004	10.018	9.993	9.962	9.999
	3	10.335	10.345	10.321	10.297	-
l = 1	1	9.913	9.913	9.888	9.888	9.899
	2	10.252	10.253	10.228	10.227	10.259
	3	10.524	10.525	10.500	10.499	-

Results with Lagrange Interpolation Charmonium

np = 100 NL= 5 units: GeV

	n	Non-relativistic (without form factor)	Non-relativistic (with form factor in Coulomb)	Non-relativistic (with form factor in Coulomb+Linear)	Non-relativistic (with form factor + Spin-Spin)	Experimental results
	1	3.076	3.104	3.020	2.957	2.984
l = 0	2	3.662	3.679	3.595	3.556	3.638
	3	4.093	4.108	4.023	3.991	-
l = 1	1	3.488	3.489	3.403	3.400	3.525
	2	3.940	3.942	3.856	3.852	-
	3	4.321	4.323	4.237	4.233	-

Results with Lagrange Interpolation

np = 100 NL= 5 units: GeV

Bottomonium

Charmonium

	n	Non-relativistic (with form factor + spin-spin)	Fully Relativistic
	1	9.373	9.158
	2	9.962	9.856
1 - 0	3	10.297	10.207
1 = 0	4	10.566	10.47873
	5	10.800	10.71291

	n	Non-relativistic (with form factor + spin-spin)	Fully Relativistic
	1	2.957	2.7707
	2	3.556	3.3697
l = 0	3	3.991	3.8003
	4	4.362	4.1651
	5	4.694	4.4921

Summary and Conclusions

-Solved the schrodinger equation using a linear + Coulomb potential for bottomonium and charmonium and improved the accuracy of the numerical solutions of the the linear potential through the use of a new interpolation method.

- For pseudoscalar mesons : Included the spin-spin hyperfine interaction to the potential and we observed substantial effects which makes the masses smaller.

- We compared our results with hyperfine interaction with experimental data, which show good agreance in both the meson masses.

- Add all the hyperfine interactions, such as the remaining ones for the Coulomblike potential, as well as the ones arising from the linear potential.

- Adjust parameters, such as quark mass and interaction strength, through the constants alpha and sigma.

- Perform a fit to the bottomonium and charmonium spectrum.