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Standard Model

Fermions

Bosons
Force
camiers

-> hadrons: bound states of

strongly interacting quarks
- mesons: quark-antiquark
- baryons: 3 quarks

Standard Hadrons




Quark and Anti-quark Potential

-> One Gluon Exchange + Linear Confinement: V(r) = —% + or
-> Good description of the bottomonium spectrum
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Objectives

- Study effects of hyperfine interaction in meson masses

=> Solve numerically the Schrédinger equation in momentum space for linear and
Coulomb potentials

Approach:

=> Treat the singularities analytically
=> Turn the S.E. into an eigen value problem



Method

- Obtain the Schrodinger equation in momentum space

-> Do the partial wave decomposition for linear and Coulomb potential
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Method

- Treat the singularities in linear and Coulomb potential

- The idea is to rewrite our singularities into integrals we know how to calculate
-> The remaining integral will no longer be singular
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Method

- Obtain singularity free S.E. for linear and Coulomb potentials
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- Use the Gauss Legendre Quadrature to solve the integrals (discretizing p)
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Method

-> Evaluate this term
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Method

-=> Now our SE has first and second derivatives in it!

- We can put our derivatives in terms of 4, (p) = Z Ve(p;)L;(p)
an interpolating function j

-> What should be this interpolation function?




Solution 1: cubic splines

=> The derivatives are approximated to derivatives of an interpolating
function

SZ(QC) =a; + b;x + Cin + diiBg, T < {33’7;_1, iL‘z}

v, =Y DYy, o =3 DDy,
J /]

=> Choose boundary conditions to match proper wave behavior




Solution 2: Lagrange Interpolation
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Method

-> Solve the eigen-value and vector problem for the matrix obtained

2 N 72
p? oml(l+1) mrp, ‘ 2p; PaD "Wy (pi)
|:2“+2pz B We(p :) Z .1”] pjz p 2[1)8(./:3)‘1’!(17]) We(pi)l— P2 p?
Jj=1,j#1 J
20 ] 3 (Vg oy, 1[UE+1) (2)
= w’{4pi Dij We(pi) + 4[ 2}7,2 We(pi) +Dij ‘l’e(Pz)]
2 &1 o Wi ( )
o Pi + Py Pi Yij
z wj— In ‘ ] Py(yij)¥e(pj)— Pt(l) ‘l’l‘(PJ Z Wj L ] — e(pj)
T W \PiP
o+ 1L [(pitp i P P « P
- wi=In | =51 5 Py )W) — = We(pi) | += S w; Z W1 (i) We(p;) = EVo(p;
,rj};# i3 (p,- _pj) oy Pl Ve(e)= - Velpy) wjz___j] i Weer (i) ¥elps) = E¥el(p)

Miah: — ,
Eigen value problem! — Z t) T Epi
J




Results: Linear Potential with cubic splines

Test case of the Schrodinger equation with linear potential : the exact
solutions for | = O (S wave) are known Airy Functions.

Results with 1000 integration points.
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n Numerical Results

Exact Values

Numerical Results

Exact Values

1 2.3381073948

2.3381074105

9.0226565188

9.0226508533

2 4.0879490817

4.0879494441

10.0401871972

10.0401743416

3 5.5205592518

5.5205598281

11.0085487188

11.0085243037

4 6.7867079666

6.7867080901

11.9360572362

11.9360155632

5 7.9441352618

7.9441335871

10

12.8288428719

12.8287767529




Results: Linear Potential with Lagrange

np=1000 NL=5

n Numerical Results Exact Values n Numerical Results Exact Values

1 2.3381074105 2.3381074105 6 9.0226508400 9.0226508533
2 4.0879494442 4.0879494441 7 10.0401743111 10.0401743416
3 5.5205598281 5.5205598281 8 11.0085242419 11.0085243037
4 6.7867080889 6.7867080901 9 11.9360155581 11.9360155632
) 7.9441335823 7.9441335871 10 12.8287767217 12.8287767529




Bottomonium System
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HyperFine Interactions in One Gluon Exchange

Spin-orbit
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spin-spin Tensor Force



Pauli-Villars regularization (form factor)
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Results with Lagrange Interpolation
Bottomonium
np=100 NL=5 units: GeV

Nor_1-re|ativistic I_\Ion-relativistic. Non-relativistic.(with an-relativistic Experimental
n (without form (with form factor in form factqr in (with fqrm fa_lctor results
factor) Coulomb) Coulomb+Linear) + Spin-Spin)

1 9.444 9.478 9.453 9.373 9.398
=0 2 10.004 10.018 9.993 9.962 9.999

3 10.335 10.345 10.321 10.297 -

1 9.913 9.913 0.888 9.888 9.899
=1 2 10.252 10.253 10.228 10.227 10.259

3 10.524 10.525 10.500 10.499 -




Results with Lagrange Interpolation
Charmonium
np=100 NL=5 units: GeV

Nor_1-re|ativistic I_\Ion-relativistic. Non-relativistic.(with an-relativistic Experimental
n (without form (with form factor in form factqr in (with fqrm fa_lctor results
factor) Coulomb) Coulomb+Linear) + Spin-Spin)

1 3.076 3.104 3.020 2.957 2.984
=0 2 3.662 3.679 3.595 3.556 3.638

3 4.093 4.108 4.023 3.991 -

1 3.488 3.489 3.403 3.400 3.525
=1 2 3.940 3.942 3.856 3.852 -

3 4.321 4.323 4.237 4.233 -




np = 100

Bottomonium

NL=5 units: GeV

Results with Lagrange Interpolation

Charmonium

Non-relativistic
(with form factor

Fully Relativistic

Non-relativistic
(with form factor

Fully Relativistic

+ spin-spin)
9.373 9.158
9.962 9.856
10.297 10.207
=0
10.566 10.47873
10.800 10.71291

+ spin-spin)
2.957 2.7707
3.556 3.3697
=0 3.991 3.8003
4.362 4.1651
4.694 4.4921




Summary and Conclusions

-Solved the schrodinger equation using a linear + Coulomb potential for
bottomonium and charmonium and improved the accuracy of the numerical
solutions of the the linear potential through the use of a new interpolation method.

- For pseudoscalar mesons : Included the spin-spin hyperfine interaction to the
potential and we observed substantial effects which makes the masses smaller.

- We compared our results with hyperfine interaction with experimental data,
which show good agreance in both the meson masses.



Next Steps
- Add all the hyperfine interactions, such as the remaining ones for the Coulomb-
like potential, as well as the ones arising from the linear potential.

- Adjust parameters, such as quark mass and interaction strength, through the
constants alpha and sigma.

- Perform a fit to the bottomonium and charmonium spectrum.
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