

Probing Quark Hadronization with B mesons

Ye Jinghao

Prof. Dr. Nuno Leonardo Prof. Henrique Legoinha

LIP Internship Program, Final Workshop, 5/9/24

CMS @ LIP 2024 | 1/13

Hadronization

- Hadronization: quarks bound together via the strong force to form hadron.
- Colour confinement: Quarks cannot exit by themselves
- The hadronization mechanism (QCD) is not fully understood

CMS @ LIP 2024 | 2/13

CMS (Compact Muon Solenoid)

- CMS is a general purpose detector located at the LHC
- Dataset: pp collisions at 5.02TeV, luminosity=302.3pb-1
- Silicon Tracker (measures charged particles) and Moun Chambers (measures muons) are the main CMS sub-detectors used in this analysis

CMS @ LIP 2024 | 3/13

B mesons as the object of study of Hadronization

Particle	Symbol	Composition	Charge
Charged B meson	B ⁺	uĎ	+1
Neutral B meson	B ⁰	dĐ	0
Strange B meson	B ⁰ _S	sb	0
Charmed B meson	$\mathbf{B}_{\mathcal{C}}^+$	cĐ	+1

 $B^+ \to J/\psi K^+ \to \mu^+ \mu^- K^+$

The leading-order Feynman diagram of the Bs (left) and Bs (right)

CMS @ LIP 2024 | 4/13

Differential cross section

$$\frac{d\sigma}{dp_T} = \frac{1}{\epsilon LB} \frac{dN_S}{dp_T}$$

- σ : Cross Section
- B: Branching Fraction of B meson decay (from PDG)
- L: Luminosity (L = 302.3 pb^-1)
- N_s : **Signal Sield** (number of signal events in data)
- ε: Selection Efficiency × Detector Acceptance

CMS @ LIP 2024 | 6/13

The production of B mesons can be studied employing:

- B kinematic variables:
 - transverse momentum
 - rapidity
- environment variables
 multiplicity

Multiplicity: number of final charged particles in the event.

Corrected multiplicity distribution

Multiplicity Distribution

CMS @ LIP 2024 | 7/13

Visualizing the Data

Fit to invariant mass distribution in data

Fit model used:

- 2 Gaussian for signal
- Exponencial for background
- Error function for partially reconstructed background
- Assymetric gaussian for Cabibbo suppressed background

Fit quality

- Chi squared are close to 1 => good fit
- Various models are employed to determine the systematic uncertainty

CMS @ LIP 2024 | 10/13

Diferential signal yield VS Multiplicity

CMS @ LIP 2024 | 11/13

10

60

Total Efficiency

Dependence on rapidity and transverse momentum

$$\varepsilon = \alpha \times \epsilon \to \varepsilon(p_T, y) = \alpha(p_T, y) \times \epsilon(p_T, y)$$

CMS @ LIP 2024 | 12/13

Summary and next steps

What I have done:

- Extract the B+ meson signal yield vs event multiplicity
- Determine analysis efficiency from Monte Carlo simulation

Next step:

• Combine those to calculate the differential cross section