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Introduction
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Large Hadron Collider (LHC)

- Two general purpose detectors: ATLAS and CMS

LINAC 2




ATLAS Trigger System

ATLAS detector

Collision rate: 40MHz

(one bunch crossing | ===

every 25 ns) Information &e&lcﬂﬂ:

TRIGGER SYSTEM

Level 1 (L1) Trigger

— Hardware based

— Uses reduced-granularity information f——->
from the calorimeters and the muon
system

High Level Trigger (HLT)

— Reconstruction algorithms with higher levels of detail

— Trigger menu: list of chains applying specific
selections

Can we use anomaly detection at trigger level to select “anomalous” and potentially signal-like events?




Datasets

Two datasets: background (658537 events) and SM signal of a di-Higgs production HH—>bbbb (99720 events)

— Foreach event, the first and second leading p; jets were used: The background
corresponds to real data!

—> Three variables considered: jets p;and |n,-n,|

— Eachjet comprises several constituents: clusters of cells in the calorimeter where the incoming

particles deposit their energy. 60-

—> Two leading p; constituents were considered;

—> The variables used were: p;, nCells, time, dn, d¢ and dr. z
The time and energy correlation of each cluster = cagpd

show the out-of-time pile-up contributions 601

from the previous and next bunch crossings. 801

103 104 10° 106

Energy;; [MeV]




Datasets

Two datasets: background (658537 events) and SM signal hh-bbbb (99720 events)
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Plot of the jet variables and the input variables of the leading constituents of the leading jets
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Enhanced Bias Mechanism

EB datasets: a mix of events selected by the L1 105
trigger system constructed such that the higher 105 _

energy and object multiplicity bias is removable
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> EB dataset from 2022 was considered. % 10° 8
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— Discrete values that recover the zero bias; 10% | ———— T _ _

— Higher for low py jets; 0 100 200 300 400 500 600 700 800 107

— Can be added to the training of our model. Jet pr [GeV]




Enhanced Bias Mechanism

EB datasets: a mix of events selected by the L1
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Autoencoder (AE)

AE final version

Encoder :}{: 4 Dec:o;é:ler
N
L J | J
1 |
Two hidden layers Two hidden layers
with dim 25 and 24 with dim 24 and 25

Input dim 27 Output dim 27

Latent space dim 22




Autoencoder (AE) = T = —
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Reconstruction error and ROC curve

Unsupervised learning: the anomaly score is obtained  ROC curve: plot of the background rejection against

using the mean squared error of each event, mse the signal efficiency at various thresholds settings.
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Background Rate Distribution
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Conclusion

- Developed AE model using low-level input variables that are readily available at HLT;
—> This work follows form previous work using track-based variables with considerable CPU

cost but better performance.

Future directions

1) EB datasets reflect the L1 configuration and LHC beam parameters at the time they are
taken. In this work, an EB dataset from 2022 was considered.

- The performance of the model could also be evaluated by considering other EB datasets.
2) Explore other architectures (deep sets, SVDD models) where the data from all the

constituents could be used.
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ATLAS detector

ATLAS Coordinate System




EB weights

EB weight calculation

FE B chains

11

j=1

(

Differential cross-section as a function of p,N"® in
inclusive bins of N,

o LI I I I I I I Ieltsl | I T
E 10°F aTLAS ® Data = Pythia
e} 108 Vs =13 TeV, 140 fo' = PH+Pythia vV Sherpa Lund
= . 4 Sherpa & Herwig7
Tb)l% 104 .l'l*. X PH+Herwig7
-l—l-l‘.‘
1
1072
10
108" N . !!Qg
= N <3 (x107) p
108 D)
¢ Ngo<4 (x109)
10_101111 1 1 ool | |
70 10*  2x10° 10°  2x10°




Choice of input variables
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