

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS

LOMaC

Laboratory of optics and scintillating materials

<u>A. Gomes</u>, R. Gonçalo, L. Gurriana, A. Maio, <u>R. Pedro</u>, J.G. Saraiva, L. Seabra PhD students: R. Machado, B. Pereira IPC/Univ. Minho main collaborator: A. Pontes

LIP Advisory meeting, April 19th 2024

MAIN ACTIVITIES 2023-2024

New scintillators based on PEN and PET

(next slide)

ATLAS Phase II upgrade

HV cables for TileCal and HGTD (with PT branch of General Cable) ¹/₂

Sets of fibres for NEXT

HD-DEMO Caboo

WLS fibres panels

Preparation and aluminisation of sets of optical fibres with different lengths. IFIC, Valencia DIPC, Donostia HV regulation & distribution boards for TileCal (with contributions from LIP eCRIab and Detector Iab)

R&D finishing

Preparing for production

LIP Advisory meeting, April 19th 2024

TOWARD FUTURE DETECTORS

New scintillators based on PEN and PET

With IPC / Univ. Minho **DLight** exploratory project (PI: • Rute Pedro) finished in 2023 New proposal **ScintiLink** submitted: towards real size • tiles produced by injection moulding; set basis for industrial production

ECFA Detector R&D Roadmap DRD6 DRD6 Collaboration

- Sampling HCAL made of scintillator tiles, readout using WLS fibres
- Cost-effective approach for hadron calorimetry /

INCDTIM (**Romania**) Charles University

CERN (Switzerland)

FZU (Czech Republic)

Universitetet I Bergen

LIP (Portugal)

(Norway)

IFIC - Valencia

University (Spain)

Hadronic calorimeter

- Design based on alternating steel and scintillator layers
 - Well studies and tested design (similar to ATLAS TileCal)
 - 5 mm absorbers, 3 mm scintillators
- 13 radial layers
- 128 modules in ϕ , 2 tiles per module $\rightarrow \Delta \phi = 0.025$
- $\Delta \eta = 0.025$ (grouping 3-4 tiles)
- Acts as return yoke for solenoid
- Performance studies progressing
 well

Our intentions for DRD6:

- R&D on PET + PEN scintillators with cost-effective production of tiles
- simulated perfomance studies of a high granularity calorimeter for a future lepton collider

LIP Advisory meeting, April 19th 2024

l 19th 2024 (with FCC/LIP team)

SWOT analysis

Strengths

Long-standing expertise in the test, preparation, and aluminization of plastic optical fibres for detectors.

Only a few facilities of this kind exist in the world. LOMaC is fundamental for the ATLAS TileCal upgrades and it is frequently requested to contribute to other experiments (e.g. NEXT).

Weaknesses

Difficulty to keep regular funding.

Laboratory poorly or not equipped for the characterisation of important properties of scintillating materials (light signal decay time, pulse shape, transmission spectra).

Opportunities

The FCC-hh Conceptual Design Report has demonstrated that the TileCal design is still one of the best for a hadronic calorimeter. This opens the opportunity to participate in new detectors in HEP or related fields.

The ECFA Detector R&D Roadmap implementation, with the new Detector R&D Collaborations, opens new opportunities to boost our R&D on scintillators and calorimetry for the future experiments, to establish new international collaborations and attract new funding. Materializing with participation in DRD6.

D Threats

The closure of the PT-CERN PhD programme will most probably affect the incoming of new students.