NDET

Neutron detectors

Principal Investigator: Luís Margato (80)

6 Researcher(s):

Alberto Blanco (15), Andrey Morozov (40), Luís Lopes (15), Paulo Fonte, Vitaly Chepel (30), Vladimir Solovov (25)

1 Technician(s): João Saraiva (15)

1 *Master Student(s):* Giorgio Canezin (100)

5 *Undergraduated Student(s) and Trainee(s):* Ana Filipa Santos, Carolina Fernandes, Daniel Marmelo, David Mendonça, José Beleza

1 *External collaborator(s):* Luís Pereira

Total FTE: 3.2

Highlights

A nRPC-4D detector assembled and tested at ILL

- 200 mm x 200 mm sensitive area
- 10 D-Gap RPCs (20 layers of ¹⁰B₄C)
 - RPC 1 to 9: float glass
 - RPC 10: low resistivity glass (AIDAINOVA)

Fast neutron RPC detectors for tests at HISPANOS (with RPC

and NUC-RIA groups) Manufactured @ LIP MW

Student training

MSc Thesis (G. Canezin)

We join the DRD1 Collaboration, WP9 BEYOND HEP

Applied for funding

- Horizon EU call HORIZON-INFRA-2024-TECH-01-01 (jointly with the mayor neutron facilities in EU)
- FCT: 2023.15652.PEX (collaboration with ILL)

LIP Advisory Committee Meeting, April 19, 2024

nRPC-4D Detector

nRPC-4D detector tests at ILL

First neutrons seen @ CT2 beamline (ILL)

A nRPC-4D detector tested at ILL

RPC 1 to 9 (float glass): Neutron Detection Efficiency

Simulation prediction (GEANT4 /ANTS3)

Total DE of **41.5%** for λn =2.5 Å (57% for λn = 4.5 Å)

A nRPC-4D detector assembled and tested at ILL

C. Rate ~ 19 kHz/cm²

A nRPC-4D detector assembled and tested at ILL

RPC 10 (low resistivity glass): Count Rate

No changes are observed in the profile at Máx. Neutron Flux

A nRPC-4D detector tested at ILL RPC 1 to 9 (float glass): Z-coordinate

Identification of the ¹⁰B₄C layer along the stack (Z-direction) where neutron capture

nRPC-4D tests results summary

- Location of neutron capture in three dimensions (XYZ) demonstrated.
- Capability to measure **nToF**.
- The scaling of the detection area of a factor 4 in relation to the first prototype shows no impact on spatial resolution, **staying below 0.3 mm FWHM.**
- Overall detection efficiency of ~42 % (λn=2.5 Å) for 9 RPCs is in good agreement with the simulation prediction.
- The **increase of the count rate capability**, scaling with the number of detection modules, was observed.
- **RPC 10, with low resistivity glass**, does not seems to be affected by the high neutron beam flux spatial resolution kept unchanged.
- Prospects of achieving count rates of a **few hundred kHz/cm2** may become realistic.

SWOT

Extensive knowledge in the development of neutron detectors.

Strong background in simulations and position reconstruction.

Long-standing collaboration with detector groups from ILL, FRM II and ISIS neutron facilities.

Weaknesses

Limited human resources.

Absence of a neutron source in LIP for testing detectors.

Opportunities

¹⁰B-RPC technology demonstrates a strong potential for applications at large scale neutron facilities.

Neutron facilities are driving the development of new types of neutron detectors.

Threats

Not sustainable funding.

Extra Slides

XYZ coordinates and time

 $n + {}^{10}B \rightarrow \begin{cases} {}^{7}\text{Li}(0.84 \text{ MeV}) + {}^{4}\text{He}(1.47 \text{ MeV}) + \gamma(0.47 \text{ MeV}), & 94\% \\ {}^{7}\text{Li}(1.01 \text{ MeV}) + {}^{4}\text{He}(1.78 \text{ MeV}), & 6\%. \end{cases}$

XY-coordinates: arrays of parallel Cu-strips mutually orthogonal,

- Pitch: 1 mm
- Strips width: 0.3 mm

Z-coordinate: asymmetry of signal sum in xand y-strips,

- X- Sum signal > Y- Sum signal (Neutron capture in the top 10B4C layer)
- X- Sum signal < Y- Sum signal (Neutron capture in the bottom 10B4C layer)

nToF measurement at BOA beamline at PSI

