RPC R&D 2023. Lines of work and Highlights

RPC-PET

- First paper about BRPC-PET https://www.doi.org/10.1016/j.nima.2023.168236
- No new developments due to lack of human resources and the physical relocation of the system at ICNAS.
- Actively seek for funding: the Caixa Research Health Call and Interreg project (with European funds) together with ten other Portuguese/Spanish Institutes/Companies.

Timing RPCs (tRPCs) and PS-tRPCs

- HADES: First paper about FD-TOF-RPC (world's first heated RPC) https://www.doi.org/10.1016/j.nima.2023.168182
- **R³B: First paper** about R³B TOF (SHiP timing detector prototype) https://www.doi.org/10.1016/j.nima.2023.168445
- PS-tRPCs: promising results on a large area readout capable of extracting both timing and spatial information (< 100 ps and > 1 mm respectively, together with > 98 % Eff) scalable in area without the need to incorporate new electronics channels. To be presented in Pisa meeting.

Autonomous RPCs

- All the data acquisition campaigns planned for the MUTOM detector were successfully carried out, demonstrating again the possibility to use RPCs outdoor. https://www.doi.org/10.1016/j.nima.2023.169031
- Great progress in Sealed RPCs. Large area multi-gap prototype https://www.doi.org/10.1140/epjp/s13360-023-04647-1, or small portable systems for SND@LHC (publication under review), demonstrating the possibility to work stably for period of more than one year.

News

The group is now part of the DRD1 Collaboration at CERN as part of WP7 Timing detectors.

RPC R&D. Future 2024 (main lines) of work

- **RPC-BrainPET:** We expect to characterize the RPC-BrainPET and start the first human trials

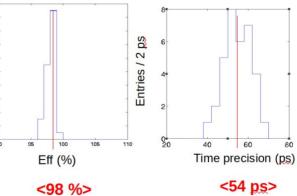
- Consolidate and advance the **PS-tRPC readout** validating the result in large area RPCs and continue the development within DRD1. - Understand the **SHiP** new situation.

- Continue with the evaluation of **Sealed RPCs** technology incorporating timing (< 100 ps) capability (apply for a specific expP) and continue operating the existing devices.

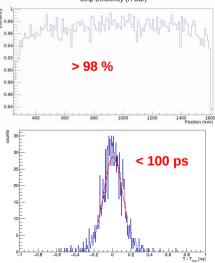
- Use sealed RPCs in muon tomography.

- Complete characterization of RPCs operated in a pressure range from 1000mBar to 400 mBar for SWGO. Installation onsite of prototypes.

RPC R&D

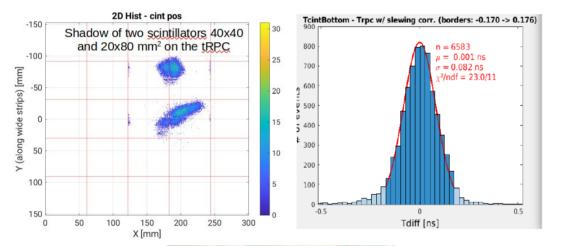

Large area precise TOF-MRPC

- < 50 ps, > 98%, > 2 m²

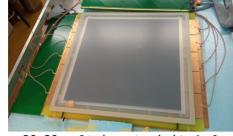

- Timing detector of ShiP experiment, operative in R³B

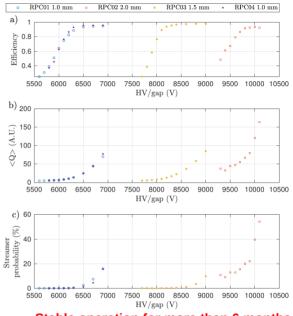
doi.org/10.1088/1748-0221/15/10/C10017 doi.org/10.1016/j.nima.2023.168445

RPC R&I

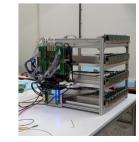

RPC R&D

Sealed RPCs


- Sealed (zero glass flow) RPCs


- < 100 ps, > 98%, < 1 mm², > 1 m²
- Low FEE density
- Future PID systems and muon Tomography

< 1 mm²


30x30 cm² to be extended to 1m²

Stable operation for more than 6 months

A. Blanco et al 2023 EPJP 138, 1021 doi.org/10.1140/epjp/s13360-023-04647-1 arxiv.org/html/2402.18663v1

82 ps